

    
      
          
            
  
PyGAD - Python Genetic Algorithm!

PyGAD [https://github.com/ahmedfgad/GeneticAlgorithmPython] is an
open-source Python library for building the genetic algorithm and
optimizing machine learning algorithms. It works with
Keras [https://keras.io] and PyTorch [https://pytorch.org].

PyGAD [https://github.com/ahmedfgad/GeneticAlgorithmPython] supports
different types of crossover, mutation, and parent selection operators.
PyGAD [https://github.com/ahmedfgad/GeneticAlgorithmPython] allows
different types of problems to be optimized using the genetic algorithm
by customizing the fitness function. It works with both single-objective
and multi-objective optimization problems.
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Logo designed by Asmaa
Kabil [https://www.linkedin.com/in/asmaa-kabil-9901b7b6]

Besides building the genetic algorithm, it builds and optimizes machine
learning algorithms. Currently,
PyGAD [https://pypi.org/project/pygad] supports building and
training (using genetic algorithm) artificial neural networks for
classification problems.

The library is under active development and more features added
regularly. Please contact us if you want a feature to be supported.



Donation & Support

You can donate to PyGAD via:


	Credit/Debit Card [https://donate.stripe.com/eVa5kO866elKgM0144]:
https://donate.stripe.com/eVa5kO866elKgM0144


	Open Collective [https://opencollective.com/pygad]:
opencollective.com/pygad [https://opencollective.com/pygad]


	PayPal: Use either this link:
paypal.me/ahmedfgad [https://paypal.me/ahmedfgad] or the e-mail
address ahmed.f.gad@gmail.com


	Interac e-Transfer: Use e-mail address ahmed.f.gad@gmail.com


	Buy a product at Teespring [https://pygad.creator-spring.com/]:
pygad.creator-spring.com [https://pygad.creator-spring.com]






Installation

To install PyGAD [https://pypi.org/project/pygad], simply use pip to
download and install the library from
PyPI [https://pypi.org/project/pygad] (Python Package Index). The
library lives a PyPI at this page https://pypi.org/project/pygad.

Install PyGAD with the following command:

pip3 install pygad







Quick Start

To get started with PyGAD [https://pypi.org/project/pygad], simply
import it.

import pygad





Using PyGAD [https://pypi.org/project/pygad], a wide range of
problems can be optimized. A quick and simple problem to be optimized
using the PyGAD [https://pypi.org/project/pygad] is finding the best
set of weights that satisfy the following function:

y = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6
where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7) and y=44





The first step is to prepare the inputs and the outputs of this
equation.

function_inputs = [4,-2,3.5,5,-11,-4.7]
desired_output = 44





A very important step is to implement the fitness function that will be
used for calculating the fitness value for each solution. Here is one.

If the fitness function returns a number, then the problem is
single-objective. If a list, tuple, or numpy.ndarray is
returned, then it is a multi-objective problem (applicable even if a
single element exists).

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution*function_inputs)
    fitness = 1.0 / numpy.abs(output - desired_output)
    return fitness





Next is to prepare the parameters of
PyGAD [https://pypi.org/project/pygad]. Here is an example for a set
of parameters.

fitness_function = fitness_func

num_generations = 50
num_parents_mating = 4

sol_per_pop = 8
num_genes = len(function_inputs)

init_range_low = -2
init_range_high = 5

parent_selection_type = "sss"
keep_parents = 1

crossover_type = "single_point"

mutation_type = "random"
mutation_percent_genes = 10





After the parameters are prepared, an instance of the pygad.GA class
is created.

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       fitness_func=fitness_function,
                       sol_per_pop=sol_per_pop,
                       num_genes=num_genes,
                       init_range_low=init_range_low,
                       init_range_high=init_range_high,
                       parent_selection_type=parent_selection_type,
                       keep_parents=keep_parents,
                       crossover_type=crossover_type,
                       mutation_type=mutation_type,
                       mutation_percent_genes=mutation_percent_genes)





After creating the instance, the run() method is called to start the
optimization.

ga_instance.run()





After the run() method completes, information about the best
solution found by PyGAD can be accessed.

solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Parameters of the best solution : {solution}".format(solution=solution))
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))

prediction = numpy.sum(numpy.array(function_inputs)*solution)
print("Predicted output based on the best solution : {prediction}".format(prediction=prediction))





Parameters of the best solution : [3.92692328 -0.11554946 2.39873381 3.29579039 -0.74091476 1.05468517]
Fitness value of the best solution = 157.37320042925006
Predicted output based on the best solution : 44.00635432206546





There is more to do using PyGAD. Read its documentation to explore the
features of PyGAD.



PyGAD’s Modules

PyGAD [https://pypi.org/project/pygad] has the following modules:


	The main module has the same name as the library pygad which is
the main interface to build the genetic algorithm.


	The nn module builds artificial neural networks.


	The gann module optimizes neural networks (for classification
and regression) using the genetic algorithm.


	The cnn module builds convolutional neural networks.


	The gacnn module optimizes convolutional neural networks using
the genetic algorithm.


	The kerasga module to train Keras [https://keras.io] models
using the genetic algorithm.


	The torchga module to train PyTorch [https://pytorch.org]
models using the genetic algorithm.


	The visualize module to visualize the results.


	The utils module contains the operators (crossover, mutation,
and parent selection) and the NSGA-II code.


	The helper module has some helper functions.




The documentation discusses these modules.



PyGAD Citation - Bibtex Formatted

If you used PyGAD, please consider citing its paper with the following
details:

@article{gad2023pygad,
  title={Pygad: An intuitive genetic algorithm python library},
  author={Gad, Ahmed Fawzy},
  journal={Multimedia Tools and Applications},
  pages={1--14},
  year={2023},
  publisher={Springer}
}







pygad Module


pygad Module TOC


	pygad Module

	pygad.GA Class
	__init__()

	Plotting Methods in pygad.GA Class

	Class Attributes

	Other Instance Attributes & Methods
	Other Attributes

	Other Methods





	initialize_population()

	cal_pop_fitness()

	run()

	Parent Selection Methods
	steady_state_selection()

	rank_selection()

	random_selection()

	tournament_selection()

	roulette_wheel_selection()

	stochastic_universal_selection()

	nsga2_selection()

	tournament_selection_nsga2()





	Crossover Methods
	single_point_crossover()

	two_points_crossover()

	uniform_crossover()

	scattered_crossover()





	Mutation Methods
	random_mutation()

	swap_mutation()

	inversion_mutation()

	scramble_mutation()

	adaptive_mutation()





	best_solution()

	plot_fitness()

	plot_new_solution_rate()

	plot_genes()

	save()





	Functions in pygad
	pygad.load()





	Steps to Use pygad
	Preparing the fitness_func Parameter
	Preparing Other Parameters

	The on_generation Parameter





	Import pygad

	Create an Instance of the pygad.GA Class

	Run the Genetic Algorithm

	Plotting Results

	Information about the Best Solution

	Saving & Loading the Results





	Life Cycle of PyGAD

	Examples
	Linear Model Optimization - Single Objective

	Linear Model Optimization - Multi-Objective

	Reproducing Images
	Project Steps

	Read an Image

	Prepare the Fitness Function

	Create an Instance of the pygad.GA Class

	Run PyGAD

	Plot Results

	Calculate Some Statistics

	Evolution by Generation





	Clustering

	CoinTex Game Playing using PyGAD











More About pygad Module


More About pygad Module TOC


	More About PyGAD

	Multi-Objective Optimization

	Limit the Gene Value Range using the gene_space Parameter

	More about the gene_space Parameter
	How Mutation Works with the gene_space Parameter?





	Stop at Any Generation

	Stop Criteria

	Elitism Selection

	Random Seed

	Change Population Size during Runtime

	Prevent Duplicates in Gene Values
	Solve Duplicates using a Third Gene





	More about the gene_type Parameter
	Data Type for All Genes without Precision

	Data Type for All Genes with Precision

	Data Type for each Individual Gene without Precision

	Data Type for each Individual Gene with Precision





	Parallel Processing in PyGAD
	How to Use Parallel Processing in PyGAD

	Examples





	Print Lifecycle Summary

	Logging Outputs
	Logging to the Console

	Logging to a File

	Log to Both the Console and a File

	PyGAD Example





	Solve Non-Deterministic Problems

	Reuse the Fitness instead of Calling the Fitness Function
	1. save_solutions

	2. save_best_solutions

	3. keep_elitism

	4. keep_parents





	Why the Fitness Function is not Called for Solution at Index 0?

	Batch Fitness Calculation
	Example without fitness_batch_size Parameter

	Example with fitness_batch_size Parameter





	Use Functions and Methods to Build Fitness and Callbacks
	Assign Functions

	Assign Methods











utils Module


utils Module TOC


	pygad.torchga Module

	pygad.utils.crossover Submodule

	pygad.utils.mutation Submodule

	Adaptive Mutation
	Use Adaptive Mutation in PyGAD





	pygad.utils.parent_selection Submodule

	pygad.utils.nsga2 Submodule

	User-Defined Crossover, Mutation, and Parent Selection Operators
	User-Defined Crossover Operator

	User-Defined Mutation Operator

	User-Defined Parent Selection Operator

	Example











visualize Module


visualize Module TOC


	pygad.visualize Module

	Fitness
	plot_fitness()
	plot_type="plot"

	plot_type="scatter"

	plot_type="bar"









	New Solution Rate
	plot_new_solution_rate()
	plot_type="plot"

	plot_type="scatter"

	plot_type="bar"









	Genes
	plot_genes()
	graph_type="plot"
	plot_type="plot"

	plot_type="scatter"

	plot_type="bar"





	graph_type="boxplot"

	graph_type="histogram"















helper Module


helper Module TOC


	pygad.helper Module







pygad.nn Module


pygad.nn Module TOC


	pygad.nn Module

	Supported Layers
	pygad.nn.InputLayer Class

	pygad.nn.DenseLayer Class
	previous_layer Attribute









	Functions to Manipulate Neural Networks
	pygad.nn.layers_weights()

	pygad.nn.layers_weights_as_vector()

	pygad.nn.layers_weights_as_matrix()

	pygad.nn.layers_activations()

	pygad.nn.sigmoid()

	pygad.nn.relu()

	pygad.nn.softmax()

	pygad.nn.train()

	pygad.nn.update_weights()

	pygad.nn.update_layers_trained_weights()

	pygad.nn.predict()





	Helper Functions
	pygad.nn.to_vector()

	pygad.nn.to_array()





	Supported Activation Functions

	Steps to Build a Neural Network
	Reading the Data

	Building the Network Architecture

	Training the Network

	Making Predictions

	Calculating Some Statistics





	Examples
	XOR Classification

	Image Classification

	Regression Example 1

	Regression Example 2 - Fish Weight Prediction











pygad.gann Module


pygad.gann Module TOC


	pygad.gann Module

	pygad.gann.GANN Class
	__init__()

	Instance Attributes

	Methods in the GANN Class
	create_population()

	update_population_trained_weights()









	Functions in the pygad.gann Module
	pygad.gann.validate_network_parameters()

	pygad.gann.create_network()

	pygad.gann.population_as_vectors()

	pygad.gann.population_as_matrices()





	Steps to Build and Train Neural Networks using Genetic Algorithm
	Prepare the Training Data

	Create an Instance of the pygad.gann.GANN Class

	Fetch the Population Weights as Vectors

	Prepare the Fitness Function

	Prepare the Generation Callback Function

	Create an Instance of the pygad.GA Class

	Run the Created Instance of the pygad.GA Class

	Plot the Fitness Values

	Information about the Best Solution

	Making Predictions using the Trained Weights

	Calculating Some Statistics





	Examples
	XOR Classification

	Image Classification

	Regression Example 1

	Regression Example 2 - Fish Weight Prediction











pygad.cnn Module


pygad.cnn Module TOC


	pygad.cnn Module

	Supported Layers
	pygad.cnn.Input2D Class

	pygad.cnn.Conv2D Class

	pygad.cnn.MaxPooling2D Class

	pygad.cnn.AveragePooling2D Class

	pygad.cnn.Flatten Class

	pygad.cnn.ReLU Class

	pygad.cnn.Sigmoid Class

	pygad.cnn.Dense Class





	pygad.cnn.Model Class
	get_layers()

	train()

	feed_sample()

	update_weights()

	predict()

	summary()





	Supported Activation Functions

	Steps to Build a Neural Network
	Reading the Data

	Building the Network Architecture

	Building Model

	Model Summary

	Training the Network

	Making Predictions

	Calculating Some Statistics





	Examples
	Image Classification











pygad.gacnn Module


pygad.gacnn Module TOC


	pygad.gacnn Module

	pygad.gacnn.GACNN Class
	__init__()

	Instance Attributes

	Methods in the GACNN Class
	create_population()

	update_population_trained_weights()









	Functions in the pygad.gacnn Module
	pygad.gacnn.population_as_vectors()

	pygad.gacnn.population_as_matrices()





	Steps to Build and Train CNN using Genetic Algorithm
	Prepare the Training Data

	Building the Network Architecture

	Building Model

	Model Summary

	Create an Instance of the pygad.gacnn.GACNN Class

	Fetch the Population Weights as Vectors

	Prepare the Fitness Function

	Prepare the Generation Callback Function

	Create an Instance of the pygad.GA Class

	Run the Created Instance of the pygad.GA Class

	Plot the Fitness Values

	Information about the Best Solution

	Making Predictions using the Trained Weights

	Calculating Some Statistics





	Examples
	Image Classification











pygad.kerasga Module


pygad.kerasga Module TOC


	pygad.kerasga Module

	Steps Summary

	Create Keras Model

	pygad.kerasga.KerasGA Class
	__init__()

	Instance Attributes

	Methods in the KerasGA Class
	create_population()









	Functions in the pygad.kerasga Module
	pygad.kerasga.model_weights_as_vector()

	pygad.kerasga.model_weights_as_matrix()

	pygad.kerasga.predict()





	Examples
	Example 1: Regression Example
	Create a Keras Model

	Create an Instance of the pygad.kerasga.KerasGA Class

	Prepare the Training Data

	Build the Fitness Function

	Create an Instance of the pygad.GA Class

	Run the Genetic Algorithm





	Example 2: XOR Binary Classification

	Example 3: Image Multi-Class Classification (Dense Layers)
	Prepare the Training Data





	Example 4: Image Multi-Class Classification (Conv Layers)
	Prepare the Training Data





	Example 5: Image Classification using Data Generator











pygad.torchga Module


pygad.torchga Module TOC


	pygad.torchga Module

	Steps Summary

	Create PyTorch Model

	pygad.torchga.TorchGA Class
	__init__()

	Instance Attributes

	Methods in the TorchGA Class
	create_population()









	Functions in the pygad.torchga Module
	pygad.torchga.model_weights_as_vector()

	pygad.torch.model_weights_as_dict()

	pygad.torchga.predict()





	Examples
	Example 1: Regression Example
	Create a PyTorch model

	Create an Instance of the pygad.torchga.TorchGA Class

	Prepare the Training Data

	Build the Fitness Function

	Create an Instance of the pygad.GA Class

	Run the Genetic Algorithm





	Example 2: XOR Binary Classification

	Example 3: Image Multi-Class Classification (Dense Layers)
	Prepare the Training Data





	Example 4: Image Multi-Class Classification (Conv Layers)
	Prepare the Training Data















Releases


Releases


	Release History
	PyGAD 1.0.17

	PyGAD 1.0.20

	PyGAD 2.0.0

	PyGAD 2.1.0

	PyGAD 2.2.1

	PyGAD 2.2.2

	PyGAD 2.3.0

	PyGAD 2.4.0

	PyGAD 2.5.0

	PyGAD 2.6.0

	PyGAD 2.7.0

	PyGAD 2.7.1

	PyGAD 2.7.2

	PyGAD 2.8.0

	PyGAD 2.8.1

	PyGAD 2.9.0

	PyGAD 2.10.0

	PyGAD 2.10.1

	PyGAD 2.10.2

	PyGAD 2.11.0

	PyGAD 2.12.0

	PyGAD 2.13.0

	PyGAD 2.14.0

	PyGAD 2.14.2

	PyGAD 2.14.3

	PyGAD 2.15.0

	PyGAD 2.15.1

	PyGAD 2.15.2

	PyGAD 2.16.0

	PyGAD 2.16.1

	PyGAD 2.16.2

	PyGAD 2.16.3

	PyGAD 2.17.0

	PyGAD 2.18.0

	PyGAD 2.18.1

	PyGAD 2.18.2

	PyGAD 2.18.3

	PyGAD 2.19.0

	PyGAD 2.19.1

	PyGAD 2.19.2

	PyGAD 3.0.0

	PyGAD 3.0.1

	PyGAD 3.1.0

	PyGAD 3.2.0

	PyGAD 3.3.0

	PyGAD 3.3.1





	PyGAD Projects at GitHub
	GeneticAlgorithmPython

	NumPyANN

	NeuralGenetic

	NumPyCNN

	CNNGenetic

	KerasGA

	TorchGA





	Stackoverflow Questions about PyGAD
	How do I proceed to load a ga_instance as “.pkl” format in PyGad?

	Binary Classification NN Model Weights not being Trained in PyGAD

	How to solve TSP problem using pyGAD package?

	How can I save a matplotlib plot that is the output of a function in jupyter?

	How do I query the best solution of a pyGAD GA instance?

	Multi-Input Multi-Output in Genetic algorithm (python)





	Submitting Issues

	Ask for Feature

	Projects Built using PyGAD

	Tutorials about PyGAD
	Adaptive Mutation in Genetic Algorithm with Python Examples

	Clustering Using the Genetic Algorithm in Python

	Working with Different Genetic Algorithm Representations in Python

	5 Genetic Algorithm Applications Using PyGAD

	Train Neural Networks Using a Genetic Algorithm in Python with PyGAD

	Building a Game-Playing Agent for CoinTex Using the Genetic Algorithm

	How To Train Keras Models Using the Genetic Algorithm with PyGAD

	Train PyTorch Models Using Genetic Algorithm with PyGAD

	A Guide to Genetic ‘Learning’ Algorithms for Optimization





	PyGAD in Other Languages
	French

	Spanish

	Korean
	[PyGAD] Python 에서 Genetic Algorithm 을 사용해보기





	Turkish
	PyGAD ile Genetik Algoritmayı Kullanarak Keras Modelleri Nasıl Eğitilir





	Hungarian
	Tensorflow alapozó 10. Neurális hálózatok tenyésztése genetikus algoritmussal PyGAD és OpenAI Gym használatával





	Russian
	PyGAD: библиотека для имплементации генетического алгоритма









	Research Papers using PyGAD

	More Links

	For More Information
	Tutorial: Implementing Genetic Algorithm in Python

	Tutorial: Introduction to Genetic Algorithm

	Tutorial: Build Neural Networks in Python

	Tutorial: Optimize Neural Networks with Genetic Algorithm

	Tutorial: Building CNN in Python

	Tutorial: Derivation of CNN from FCNN

	Book: Practical Computer Vision Applications Using Deep Learning with CNNs





	Contact Us







Indices and tables


	Search Page







            

          

      

      

    

  

    
      
          
            
  
pygad Module

This section of the PyGAD’s library documentation discusses the
pygad module.

Using the pygad module, instances of the genetic algorithm can be
created, run, saved, and loaded. Single-objective and multi-objective
optimization problems can be solved.



pygad.GA Class

The first module available in PyGAD is named pygad and contains a
class named GA for building the genetic algorithm. The constructor,
methods, function, and attributes within the class are discussed in this
section.


__init__()

For creating an instance of the pygad.GA class, the constructor
accepts several parameters that allow the user to customize the genetic
algorithm to different types of applications.

The pygad.GA class constructor supports the following parameters:


	num_generations: Number of generations.


	num_parents_mating: Number of solutions to be selected as
parents.


	fitness_func: Accepts a function/method and returns the fitness
value(s) of the solution. If a function is passed, then it must
accept 3 parameters (1. the instance of the pygad.GA class, 2. a
single solution, and 3. its index in the population). If method, then
it accepts a fourth parameter representing the method’s class
instance. Check the Preparing the fitness_func
Parameter [https://pygad.readthedocs.io/en/latest/pygad.html#preparing-the-fitness-func-parameter]
section for information about creating such a function. In PyGAD
3.2.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-3-2-0],
multi-objective optimization is supported. To consider the problem as
multi-objective, just return a list, tuple, or
numpy.ndarray from the fitness function.


	fitness_batch_size=None: A new optional parameter called
fitness_batch_size is supported to calculate the fitness function
in batches. If it is assigned the value 1 or None (default),
then the normal flow is used where the fitness function is called for
each individual solution. If the fitness_batch_size parameter is
assigned a value satisfying this condition
1 < fitness_batch_size <= sol_per_pop, then the solutions are
grouped into batches of size fitness_batch_size and the fitness
function is called once for each batch. Check the Batch Fitness
Calculation [https://pygad.readthedocs.io/en/latest/pygad_more.html#batch-fitness-calculation]
section for more details and examples. Added in from PyGAD
2.19.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-19-0].


	initial_population: A user-defined initial population. It is
useful when the user wants to start the generations with a custom
initial population. It defaults to None which means no initial
population is specified by the user. In this case,
PyGAD [https://pypi.org/project/pygad] creates an initial
population using the sol_per_pop and num_genes parameters. An
exception is raised if the initial_population is None while
any of the 2 parameters (sol_per_pop or num_genes) is also
None. Introduced in PyGAD
2.0.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-0-0]
and higher.


	sol_per_pop: Number of solutions (i.e. chromosomes) within the
population. This parameter has no action if initial_population
parameter exists.


	num_genes: Number of genes in the solution/chromosome. This
parameter is not needed if the user feeds the initial population to
the initial_population parameter.


	gene_type=float: Controls the gene type. It can be assigned to a
single data type that is applied to all genes or can specify the data
type of each individual gene. It defaults to float which means
all genes are of float data type. Starting from PyGAD
2.9.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-9-0],
the gene_type parameter can be assigned to a numeric value of any
of these types: int, float, and
numpy.int/uint/float(8-64). Starting from PyGAD
2.14.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-14-0],
it can be assigned to a list, tuple, or a numpy.ndarray
which hold a data type for each gene (e.g.
gene_type=[int, float, numpy.int8]). This helps to control the
data type of each individual gene. In PyGAD
2.15.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-15-0],
a precision for the float data types can be specified (e.g.
gene_type=[float, 2].


	init_range_low=-4: The lower value of the random range from which
the gene values in the initial population are selected.
init_range_low defaults to -4. Available in PyGAD
1.0.20 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-1-0-20]
and higher. This parameter has no action if the
initial_population parameter exists.


	init_range_high=4: The upper value of the random range from which
the gene values in the initial population are selected.
init_range_high defaults to +4. Available in PyGAD
1.0.20 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-1-0-20]
and higher. This parameter has no action if the
initial_population parameter exists.


	parent_selection_type="sss": The parent selection type. Supported
types are sss (for steady-state selection), rws (for roulette
wheel selection), sus (for stochastic universal selection),
rank (for rank selection), random (for random selection), and
tournament (for tournament selection). A custom parent selection
function can be passed starting from PyGAD
2.16.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-16-0].
Check the User-Defined Crossover, Mutation, and Parent Selection
Operators [https://pygad.readthedocs.io/en/latest/utils.html#user-defined-crossover-mutation-and-parent-selection-operators]
section for more details about building a user-defined parent
selection function.


	keep_parents=-1: Number of parents to keep in the current
population. -1 (default) means to keep all parents in the next
population. 0 means keep no parents in the next population. A
value greater than 0 means keeps the specified number of parents
in the next population. Note that the value assigned to
keep_parents cannot be < - 1 or greater than the number of
solutions within the population sol_per_pop. Starting from PyGAD
2.18.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-18-0],
this parameter have an effect only when the keep_elitism
parameter is 0. Starting from PyGAD
2.20.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-20-0],
the parents’ fitness from the last generation will not be re-used if
keep_parents=0.


	keep_elitism=1: Added in PyGAD
2.18.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-18-0].
It can take the value 0 or a positive integer that satisfies
(0 <= keep_elitism <= sol_per_pop). It defaults to 1 which
means only the best solution in the current generation is kept in the
next generation. If assigned 0, this means it has no effect. If
assigned a positive integer K, then the best K solutions are
kept in the next generation. It cannot be assigned a value greater
than the value assigned to the sol_per_pop parameter. If this
parameter has a value different than 0, then the keep_parents
parameter will have no effect.


	K_tournament=3: In case that the parent selection type is
tournament, the K_tournament specifies the number of parents
participating in the tournament selection. It defaults to 3.


	crossover_type="single_point": Type of the crossover operation.
Supported types are single_point (for single-point crossover),
two_points (for two points crossover), uniform (for uniform
crossover), and scattered (for scattered crossover). Scattered
crossover is supported from PyGAD
2.9.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-9-0]
and higher. It defaults to single_point. A custom crossover
function can be passed starting from PyGAD
2.16.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-16-0].
Check the User-Defined Crossover, Mutation, and Parent Selection
Operators [https://pygad.readthedocs.io/en/latest/pygad_more.html#user-defined-crossover-mutation-and-parent-selection-operators]
section for more details about creating a user-defined crossover
function. Starting from PyGAD
2.2.2 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-2-2]
and higher, if crossover_type=None, then the crossover step is
bypassed which means no crossover is applied and thus no offspring
will be created in the next generations. The next generation will use
the solutions in the current population.


	crossover_probability=None: The probability of selecting a parent
for applying the crossover operation. Its value must be between 0.0
and 1.0 inclusive. For each parent, a random value between 0.0 and
1.0 is generated. If this random value is less than or equal to the
value assigned to the crossover_probability parameter, then the
parent is selected. Added in PyGAD
2.5.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-5-0]
and higher.


	mutation_type="random": Type of the mutation operation. Supported
types are random (for random mutation), swap (for swap
mutation), inversion (for inversion mutation), scramble (for
scramble mutation), and adaptive (for adaptive mutation). It
defaults to random. A custom mutation function can be passed
starting from PyGAD
2.16.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-16-0].
Check the User-Defined Crossover, Mutation, and Parent Selection
Operators [https://pygad.readthedocs.io/en/latest/pygad_more.html#user-defined-crossover-mutation-and-parent-selection-operators]
section for more details about creating a user-defined mutation
function. Starting from PyGAD
2.2.2 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-2-2]
and higher, if mutation_type=None, then the mutation step is
bypassed which means no mutation is applied and thus no changes are
applied to the offspring created using the crossover operation. The
offspring will be used unchanged in the next generation. Adaptive
mutation is supported starting from PyGAD
2.10.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-10-0].
For more information about adaptive mutation, go the the Adaptive
Mutation [https://pygad.readthedocs.io/en/latest/pygad_more.html#adaptive-mutation]
section. For example about using adaptive mutation, check the Use
Adaptive Mutation in
PyGAD [https://pygad.readthedocs.io/en/latest/pygad_more.html#use-adaptive-mutation-in-pygad]
section.


	mutation_probability=None: The probability of selecting a gene
for applying the mutation operation. Its value must be between 0.0
and 1.0 inclusive. For each gene in a solution, a random value
between 0.0 and 1.0 is generated. If this random value is less than
or equal to the value assigned to the mutation_probability
parameter, then the gene is selected. If this parameter exists, then
there is no need for the 2 parameters mutation_percent_genes and
mutation_num_genes. Added in PyGAD
2.5.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-5-0]
and higher.


	mutation_by_replacement=False: An optional bool parameter. It
works only when the selected type of mutation is random
(mutation_type="random"). In this case,
mutation_by_replacement=True means replace the gene by the
randomly generated value. If False, then it has no effect and random
mutation works by adding the random value to the gene. Supported in
PyGAD
2.2.2 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-2-2]
and higher. Check the changes in PyGAD
2.2.2 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-2-2]
under the Release History section for an example.


	mutation_percent_genes="default": Percentage of genes to mutate.
It defaults to the string "default" which is later translated
into the integer 10 which means 10% of the genes will be mutated.
It must be >0 and <=100. Out of this percentage, the number
of genes to mutate is deduced which is assigned to the
mutation_num_genes parameter. The mutation_percent_genes
parameter has no action if mutation_probability or
mutation_num_genes exist. Starting from PyGAD
2.2.2 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-2-2]
and higher, this parameter has no action if mutation_type is
None.


	mutation_num_genes=None: Number of genes to mutate which defaults
to None meaning that no number is specified. The
mutation_num_genes parameter has no action if the parameter
mutation_probability exists. Starting from PyGAD
2.2.2 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-2-2]
and higher, this parameter has no action if mutation_type is
None.


	random_mutation_min_val=-1.0: For random mutation, the
random_mutation_min_val parameter specifies the start value of
the range from which a random value is selected to be added to the
gene. It defaults to -1. Starting from PyGAD
2.2.2 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-2-2]
and higher, this parameter has no action if mutation_type is
None.


	random_mutation_max_val=1.0: For random mutation, the
random_mutation_max_val parameter specifies the end value of the
range from which a random value is selected to be added to the gene.
It defaults to +1. Starting from PyGAD
2.2.2 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-2-2]
and higher, this parameter has no action if mutation_type is
None.


	gene_space=None: It is used to specify the possible values for
each gene in case the user wants to restrict the gene values. It is
useful if the gene space is restricted to a certain range or to
discrete values. It accepts a list, range, or
numpy.ndarray. When all genes have the same global space, specify
their values as a list/tuple/range/numpy.ndarray. For
example, gene_space = [0.3, 5.2, -4, 8] restricts the gene values
to the 4 specified values. If each gene has its own space, then the
gene_space parameter can be nested like
[[0.4, -5], [0.5, -3.2, 8.2, -9], ...] where the first sublist
determines the values for the first gene, the second sublist for the
second gene, and so on. If the nested list/tuple has a None
value, then the gene’s initial value is selected randomly from the
range specified by the 2 parameters init_range_low and
init_range_high and its mutation value is selected randomly from
the range specified by the 2 parameters random_mutation_min_val
and random_mutation_max_val. gene_space is added in PyGAD
2.5.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-5-0].
Check the Release History of PyGAD
2.5.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-5-0]
section of the documentation for more details. In PyGAD
2.9.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-9-0],
NumPy arrays can be assigned to the gene_space parameter. In
PyGAD
2.11.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-11-0],
the gene_space parameter itself or any of its elements can be
assigned to a dictionary to specify the lower and upper limits of the
genes. For example, {'low': 2, 'high': 4} means the minimum and
maximum values are 2 and 4, respectively. In PyGAD
2.15.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-15-0],
a new key called "step" is supported to specify the step of
moving from the start to the end of the range specified by the 2
existing keys "low" and "high".


	on_start=None: Accepts a function/method to be called only once
before the genetic algorithm starts its evolution. If function, then
it must accept a single parameter representing the instance of the
genetic algorithm. If method, then it must accept 2 parameters where
the second one refers to the method’s object. Added in PyGAD
2.6.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-6-0].


	on_fitness=None: Accepts a function/method to be called after
calculating the fitness values of all solutions in the population. If
function, then it must accept 2 parameters: 1) a list of all
solutions’ fitness values 2) the instance of the genetic algorithm.
If method, then it must accept 3 parameters where the third one
refers to the method’s object. Added in PyGAD
2.6.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-6-0].


	on_parents=None: Accepts a function/method to be called after
selecting the parents that mates. If function, then it must accept 2
parameters: 1) the selected parents 2) the instance of the genetic
algorithm If method, then it must accept 3 parameters where the third
one refers to the method’s object. Added in PyGAD
2.6.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-6-0].


	on_crossover=None: Accepts a function to be called each time the
crossover operation is applied. This function must accept 2
parameters: the first one represents the instance of the genetic
algorithm and the second one represents the offspring generated using
crossover. Added in PyGAD
2.6.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-6-0].


	on_mutation=None: Accepts a function to be called each time the
mutation operation is applied. This function must accept 2
parameters: the first one represents the instance of the genetic
algorithm and the second one represents the offspring after applying
the mutation. Added in PyGAD
2.6.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-6-0].


	on_generation=None: Accepts a function to be called after each
generation. This function must accept a single parameter representing
the instance of the genetic algorithm. If the function returned the
string stop, then the run() method stops without completing
the other generations. Added in PyGAD
2.6.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-6-0].


	on_stop=None: Accepts a function to be called only once exactly
before the genetic algorithm stops or when it completes all the
generations. This function must accept 2 parameters: the first one
represents the instance of the genetic algorithm and the second one
is a list of fitness values of the last population’s solutions. Added
in PyGAD
2.6.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-6-0].


	delay_after_gen=0.0: It accepts a non-negative number specifying
the time in seconds to wait after a generation completes and before
going to the next generation. It defaults to 0.0 which means no
delay after the generation. Available in PyGAD
2.4.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-4-0]
and higher.


	save_best_solutions=False: When True, then the best solution
after each generation is saved into an attribute named
best_solutions. If False (default), then no solutions are
saved and the best_solutions attribute will be empty. Supported
in PyGAD
2.9.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-9-0].


	save_solutions=False: If True, then all solutions in each
generation are appended into an attribute called solutions which
is NumPy array. Supported in PyGAD
2.15.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-15-0].


	suppress_warnings=False: A bool parameter to control whether the
warning messages are printed or not. It defaults to False.


	allow_duplicate_genes=True: Added in PyGAD
2.13.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-13-0].
If True, then a solution/chromosome may have duplicate gene
values. If False, then each gene will have a unique value in its
solution.


	stop_criteria=None: Some criteria to stop the evolution. Added in
PyGAD
2.15.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-15-0].
Each criterion is passed as str which has a stop word. The
current 2 supported words are reach and saturate. reach
stops the run() method if the fitness value is equal to or
greater than a given fitness value. An example for reach is
"reach_40" which stops the evolution if the fitness is >= 40.
saturate means stop the evolution if the fitness saturates for a
given number of consecutive generations. An example for saturate
is "saturate_7" which means stop the run() method if the
fitness does not change for 7 consecutive generations.


	parallel_processing=None: Added in PyGAD
2.17.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-17-0].
If None (Default), this means no parallel processing is applied.
It can accept a list/tuple of 2 elements [1) Can be either
'process' or 'thread' to indicate whether processes or
threads are used, respectively., 2) The number of processes or
threads to use.]. For example,
parallel_processing=['process', 10] applies parallel processing
with 10 processes. If a positive integer is assigned, then it is used
as the number of threads. For example, parallel_processing=5 uses
5 threads which is equivalent to
parallel_processing=["thread", 5]. For more information, check
the Parallel Processing in
PyGAD [https://pygad.readthedocs.io/en/latest/pygad_more.html#parallel-processing-in-pygad]
section.


	random_seed=None: Added in PyGAD
2.18.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-18-0].
It defines the random seed to be used by the random function
generators (we use random functions in the NumPy and random modules).
This helps to reproduce the same results by setting the same random
seed (e.g. random_seed=2). If given the value None, then it
has no effect.


	logger=None: Accepts an instance of the logging.Logger class
to log the outputs. Any message is no longer printed using
print() but logged. If logger=None, then a logger is created
that uses StreamHandler to logs the messages to the console.
Added in PyGAD
3.0.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-3-0-0].
Check the Logging
Outputs [https://pygad.readthedocs.io/en/latest/pygad_more.html#logging-outputs]
for more information.




The user doesn’t have to specify all of such parameters while creating
an instance of the GA class. A very important parameter you must care
about is fitness_func which defines the fitness function.

It is OK to set the value of any of the 2 parameters init_range_low
and init_range_high to be equal, higher, or lower than the other
parameter (i.e. init_range_low is not needed to be lower than
init_range_high). The same holds for the random_mutation_min_val
and random_mutation_max_val parameters.

If the 2 parameters mutation_type and crossover_type are
None, this disables any type of evolution the genetic algorithm can
make. As a result, the genetic algorithm cannot find a better solution
that the best solution in the initial population.

The parameters are validated within the constructor. If at least a
parameter is not correct, an exception is thrown.



Plotting Methods in pygad.GA Class


	plot_fitness(): Shows how the fitness evolves by generation.


	plot_genes(): Shows how the gene value changes for each
generation.


	plot_new_solution_rate(): Shows the number of new solutions
explored in each solution.






Class Attributes


	supported_int_types: A list of the supported types for the
integer numbers.


	supported_float_types: A list of the supported types for the
floating-point numbers.


	supported_int_float_types: A list of the supported types for all
numbers. It just concatenates the previous 2 lists.






Other Instance Attributes & Methods

All the parameters and functions passed to the pygad.GA class
constructor are used as class attributes and methods in the instances of
the pygad.GA class. In addition to such attributes, there are other
attributes and methods added to the instances of the pygad.GA class:

The next 2 subsections list such attributes and methods.


Other Attributes


	generations_completed: Holds the number of the last completed
generation.


	population: A NumPy array holding the initial population.


	valid_parameters: Set to True when all the parameters passed
in the GA class constructor are valid.


	run_completed: Set to True only after the run() method
completes gracefully.


	pop_size: The population size.


	best_solutions_fitness: A list holding the fitness values of the
best solutions for all generations.


	best_solution_generation: The generation number at which the best
fitness value is reached. It is only assigned the generation number
after the run() method completes. Otherwise, its value is -1.


	best_solutions: A NumPy array holding the best solution per each
generation. It only exists when the save_best_solutions parameter
in the pygad.GA class constructor is set to True.


	last_generation_fitness: The fitness values of the solutions in
the last generation. Added in PyGAD
2.12.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-12-0].


	previous_generation_fitness: At the end of each generation, the
fitness of the most recent population is saved in the
last_generation_fitness attribute. The fitness of the population
exactly preceding this most recent population is saved in the
last_generation_fitness attribute. This
previous_generation_fitness attribute is used to fetch the
pre-calculated fitness instead of calling the fitness function for
already explored solutions. Added in PyGAD
2.16.2 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-16-2].


	last_generation_parents: The parents selected from the last
generation. Added in PyGAD
2.12.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-12-0].


	last_generation_offspring_crossover: The offspring generated
after applying the crossover in the last generation. Added in PyGAD
2.12.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-12-0].


	last_generation_offspring_mutation: The offspring generated after
applying the mutation in the last generation. Added in PyGAD
2.12.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-12-0].


	gene_type_single: A flag that is set to True if the
gene_type parameter is assigned to a single data type that is
applied to all genes. If gene_type is assigned a list,
tuple, or numpy.ndarray, then the value of
gene_type_single will be False. Added in PyGAD
2.14.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-14-0].


	last_generation_parents_indices: This attribute holds the indices
of the selected parents in the last generation. Supported in PyGAD
2.15.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-15-0].


	last_generation_elitism: This attribute holds the elitism of the
last generation. It is effective only if the keep_elitism
parameter has a non-zero value. Supported in PyGAD
2.18.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-18-0].


	last_generation_elitism_indices: This attribute holds the indices
of the elitism of the last generation. It is effective only if the
keep_elitism parameter has a non-zero value. Supported in PyGAD
2.19.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-19-0].


	logger: This attribute holds the logger from the logging
module. Supported in PyGAD
3.0.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-3-0-0].


	gene_space_unpacked: This is the unpacked version of the
gene_space parameter. For example, range(1, 5) is unpacked to
[1, 2, 3, 4]. For an infinite range like
{'low': 2, 'high': 4}, then it is unpacked to a limited number of
values (e.g. 100). Supported in PyGAD
3.1.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-3-1-0].


	pareto_fronts: A new instance attribute named pareto_fronts
added to the pygad.GA instances that holds the pareto fronts when
solving a multi-objective problem. Supported in PyGAD
3.2.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-3-2-0].




Note that the attributes with names starting with last_generation_
are updated after each generation.



Other Methods


	cal_pop_fitness(): A method that calculates the fitness values
for all solutions within the population by calling the function
passed to the fitness_func parameter for each solution.


	crossover(): Refers to the method that applies the crossover
operator based on the selected type of crossover in the
crossover_type property.


	mutation(): Refers to the method that applies the mutation
operator based on the selected type of mutation in the
mutation_type property.


	select_parents(): Refers to a method that selects the parents
based on the parent selection type specified in the
parent_selection_type attribute.


	adaptive_mutation_population_fitness(): Returns the average
fitness value used in the adaptive mutation to filter the solutions.


	summary(): Prints a Keras-like summary of the PyGAD lifecycle.
This helps to have an overview of the architecture. Supported in
PyGAD
2.19.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-19-0].
Check the Print Lifecycle
Summary [https://pygad.readthedocs.io/en/latest/pygad_more.html#print-lifecycle-summary]
section for more details and examples.


	4 methods with names starting with run_. Their purpose is to keep
the main loop inside the run() method clean. The details inside
the loop are moved to 4 individual methods. Generally, any method
with a name starting with run_ is meant to be called by PyGAD
from inside the run() method. Supported in PyGAD
3.3.1 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-3-3-1].


	run_select_parents(call_on_parents=True): Select the parents
and call the callable on_parents() if defined. If
call_on_parents is True, then the callable
on_parents() is called. It must be False when the
run_select_parents() method is called to update the parents at
the end of the run() method.


	run_crossover(): Apply crossover and call the callable
on_crossover() if defined.


	run_mutation(): Apply mutation and call the callable
on_mutation() if defined.


	run_update_population(): Update the population attribute
after completing the processes of crossover and mutation.








The next sections discuss the methods available in the pygad.GA
class.




initialize_population()

It creates an initial population randomly as a NumPy array. The array is
saved in the instance attribute named population.

Accepts the following parameters:


	low: The lower value of the random range from which the gene
values in the initial population are selected. It defaults to -4.
Available in PyGAD 1.0.20 and higher.


	high: The upper value of the random range from which the gene
values in the initial population are selected. It defaults to -4.
Available in PyGAD 1.0.20.




This method assigns the values of the following 3 instance attributes:


	pop_size: Size of the population.


	population: Initially, it holds the initial population and later
updated after each generation.


	initial_population: Keeping the initial population.






cal_pop_fitness()

The cal_pop_fitness() method calculates and returns the fitness
values of the solutions in the current population.

This function is optimized to save time by making fewer calls the
fitness function. It follows this process:


	If the save_solutions parameter is set to True, then it
checks if the solution is already explored and saved in the
solutions instance attribute. If so, then it just retrieves its
fitness from the solutions_fitness instance attribute without
calling the fitness function.


	If save_solutions is set to False or if it is True but
the solution was not explored yet, then the cal_pop_fitness()
method checks if the keep_elitism parameter is set to a positive
integer. If so, then it checks if the solution is saved into the
last_generation_elitism instance attribute. If so, then it
retrieves its fitness from the previous_generation_fitness
instance attribute.


	If neither of the above 3 conditions apply (1. save_solutions is
set to False or 2. if it is True but the solution was not
explored yet or 3. keep_elitism is set to zero), then the
cal_pop_fitness() method checks if the keep_parents parameter
is set to -1 or a positive integer. If so, then it checks if the
solution is saved into the last_generation_parents instance
attribute. If so, then it retrieves its fitness from the
previous_generation_fitness instance attribute.


	If neither of the above 4 conditions apply, then we have to call the
fitness function to calculate the fitness for the solution. This is
by calling the function assigned to the fitness_func parameter.




This function takes into consideration:


	The parallel_processing parameter to check whether parallel
processing is in effect.


	The fitness_batch_size parameter to check if the fitness should
be calculated in batches of solutions.




It returns a vector of the solutions’ fitness values.



run()

Runs the genetic algorithm. This is the main method in which the genetic
algorithm is evolved through some generations. It accepts no parameters
as it uses the instance to access all of its requirements.

For each generation, the fitness values of all solutions within the
population are calculated according to the cal_pop_fitness() method
which internally just calls the function assigned to the
fitness_func parameter in the pygad.GA class constructor for
each solution.

According to the fitness values of all solutions, the parents are
selected using the select_parents() method. This method behaviour is
determined according to the parent selection type in the
parent_selection_type parameter in the pygad.GA class
constructor

Based on the selected parents, offspring are generated by applying the
crossover and mutation operations using the crossover() and
mutation() methods. The behaviour of such 2 methods is defined
according to the crossover_type and mutation_type parameters in
the pygad.GA class constructor.

After the generation completes, the following takes place:


	The population attribute is updated by the new population.


	The generations_completed attribute is assigned by the number of
the last completed generation.


	If there is a callback function assigned to the on_generation
attribute, then it will be called.




After the run() method completes, the following takes place:


	The best_solution_generation is assigned the generation number at
which the best fitness value is reached.


	The run_completed attribute is set to True.






Parent Selection Methods

The ParentSelection class in the pygad.utils.parent_selection
module has several methods for selecting the parents that will mate to
produce the offspring. All of such methods accept the same parameters
which are:


	fitness: The fitness values of the solutions in the current
population.


	num_parents: The number of parents to be selected.




All of such methods return an array of the selected parents.

The next subsections list the supported methods for parent selection.


steady_state_selection()

Selects the parents using the steady-state selection technique.



rank_selection()

Selects the parents using the rank selection technique.



random_selection()

Selects the parents randomly.



tournament_selection()

Selects the parents using the tournament selection technique.



roulette_wheel_selection()

Selects the parents using the roulette wheel selection technique.



stochastic_universal_selection()

Selects the parents using the stochastic universal selection technique.



nsga2_selection()

Selects the parents for the NSGA-II algorithm to solve multi-objective
optimization problems. It selects the parents by ranking them based on
non-dominated sorting and crowding distance.



tournament_selection_nsga2()

Selects the parents for the NSGA-II algorithm to solve multi-objective
optimization problems. It selects the parents using the tournament
selection technique applied based on non-dominated sorting and crowding
distance.




Crossover Methods

The Crossover class in the pygad.utils.crossover module supports
several methods for applying crossover between the selected parents. All
of these methods accept the same parameters which are:


	parents: The parents to mate for producing the offspring.


	offspring_size: The size of the offspring to produce.




All of such methods return an array of the produced offspring.

The next subsections list the supported methods for crossover.


single_point_crossover()

Applies the single-point crossover. It selects a point randomly at which
crossover takes place between the pairs of parents.



two_points_crossover()

Applies the 2 points crossover. It selects the 2 points randomly at
which crossover takes place between the pairs of parents.



uniform_crossover()

Applies the uniform crossover. For each gene, a parent out of the 2
mating parents is selected randomly and the gene is copied from it.



scattered_crossover()

Applies the scattered crossover. It randomly selects the gene from one
of the 2 parents.




Mutation Methods

The Mutation class in the pygad.utils.mutation module supports
several methods for applying mutation. All of these methods accept the
same parameter which is:


	offspring: The offspring to mutate.




All of such methods return an array of the mutated offspring.

The next subsections list the supported methods for mutation.


random_mutation()

Applies the random mutation which changes the values of some genes
randomly. The number of genes is specified according to either the
mutation_num_genes or the mutation_percent_genes attributes.

For each gene, a random value is selected according to the range
specified by the 2 attributes random_mutation_min_val and
random_mutation_max_val. The random value is added to the selected
gene.



swap_mutation()

Applies the swap mutation which interchanges the values of 2 randomly
selected genes.



inversion_mutation()

Applies the inversion mutation which selects a subset of genes and
inverts them.



scramble_mutation()

Applies the scramble mutation which selects a subset of genes and
shuffles their order randomly.



adaptive_mutation()

Applies the adaptive mutation which selects a subset of genes and
shuffles their order randomly.




best_solution()

Returns information about the best solution found by the genetic
algorithm.

It accepts the following parameters:


	pop_fitness=None: An optional parameter that accepts a list of
the fitness values of the solutions in the population. If None,
then the cal_pop_fitness() method is called to calculate the
fitness values of the population.




It returns the following:


	best_solution: Best solution in the current population.


	best_solution_fitness: Fitness value of the best solution.


	best_match_idx: Index of the best solution in the current
population.






plot_fitness()

Previously named plot_result(), this method creates, shows, and
returns a figure that summarizes how the fitness value evolves by
generation.

It works only after completing at least 1 generation. If no generation
is completed (at least 1), an exception is raised.



plot_new_solution_rate()

The plot_new_solution_rate() method creates, shows, and returns a
figure that shows the number of new solutions explored in each
generation. This method works only when save_solutions=True in the
constructor of the pygad.GA class.

It works only after completing at least 1 generation. If no generation
is completed (at least 1), an exception is raised.



plot_genes()

The plot_genes() method creates, shows, and returns a figure that
describes each gene. It has different options to create the figures
which helps to:


	Explore the gene value for each generation by creating a normal plot.


	Create a histogram for each gene.


	Create a boxplot.




This is controlled by the graph_type parameter.

It works only after completing at least 1 generation. If no generation
is completed (at least 1), an exception is raised.



save()

Saves the genetic algorithm instance

Accepts the following parameter:


	filename: Name of the file to save the instance. No extension is
needed.







Functions in pygad

Besides the methods available in the pygad.GA class, this section
discusses the functions available in pygad. Up to this time, there
is only a single function named load().


pygad.load()

Reads a saved instance of the genetic algorithm. This is not a method
but a function that is indented under the pygad module. So, it could
be called by the pygad module as follows: pygad.load(filename).

Accepts the following parameter:


	filename: Name of the file holding the saved instance of the
genetic algorithm. No extension is needed.




Returns the genetic algorithm instance.




Steps to Use pygad

To use the pygad module, here is a summary of the required steps:


	Preparing the fitness_func parameter.


	Preparing Other Parameters.


	Import pygad.


	Create an Instance of the pygad.GA Class.


	Run the Genetic Algorithm.


	Plotting Results.


	Information about the Best Solution.


	Saving & Loading the Results.




Let’s discuss how to do each of these steps.


Preparing the fitness_func Parameter

Even though some steps in the genetic algorithm pipeline can work the
same regardless of the problem being solved, one critical step is the
calculation of the fitness value. There is no unique way of calculating
the fitness value and it changes from one problem to another.

PyGAD has a parameter called fitness_func that allows the user to
specify a custom function/method to use when calculating the fitness.
This function/method must be a maximization function/method so that a
solution with a high fitness value returned is selected compared to a
solution with a low value.

The fitness function is where the user can decide whether the
optimization problem is single-objective or multi-objective.


	If the fitness function returns a numeric value, then the problem is
single-objective. The numeric data types supported by PyGAD are
listed in the supported_int_float_types variable of the
pygad.GA class.


	If the fitness function returns a list, tuple, or
numpy.ndarray, then the problem is multi-objective. Even if there
is only one element, the problem is still considered multi-objective.
Each element represents the fitness value of its corresponding
objective.




Using a user-defined fitness function allows the user to freely use
PyGAD to solve any problem by passing the appropriate fitness
function/method. It is very important to understand the problem well
before creating it.

Let’s discuss an example:



Given the following function:


y = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + 6wx6

where (x1,x2,x3,x4,x5,x6)=(4, -2, 3.5, 5, -11, -4.7) and y=44



What are the best values for the 6 weights (w1 to w6)? We are going
to use the genetic algorithm to optimize this function.






So, the task is about using the genetic algorithm to find the best
values for the 6 weight W1 to W6. Thinking of the problem, it is
clear that the best solution is that returning an output that is close
to the desired output y=44. So, the fitness function/method should
return a value that gets higher when the solution’s output is closer to
y=44. Here is a function that does that:

function_inputs = [4, -2, 3.5, 5, -11, -4.7] # Function inputs.
desired_output = 44 # Function output.

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution*function_inputs)
    fitness = 1.0 / numpy.abs(output - desired_output)
    return fitness





Because the fitness function returns a numeric value, then the problem
is single-objective.

Such a user-defined function must accept 3 parameters:


	The instance of the pygad.GA class. This helps the user to fetch
any property that helps when calculating the fitness.


	The solution(s) to calculate the fitness value(s). Note that the
fitness function can accept multiple solutions only if the
fitness_batch_size is given a value greater than 1.


	The indices of the solutions in the population. The number of indices
also depends on the fitness_batch_size parameter.




If a method is passed to the fitness_func parameter, then it accepts
a fourth parameter representing the method’s instance.

The __code__ object is used to check if this function accepts the
required number of parameters. If more or fewer parameters are passed,
an exception is thrown.

By creating this function, you did a very important step towards using
PyGAD.


Preparing Other Parameters

Here is an example for preparing the other parameters:

num_generations = 50
num_parents_mating = 4

fitness_function = fitness_func

sol_per_pop = 8
num_genes = len(function_inputs)

init_range_low = -2
init_range_high = 5

parent_selection_type = "sss"
keep_parents = 1

crossover_type = "single_point"

mutation_type = "random"
mutation_percent_genes = 10







The on_generation Parameter

An optional parameter named on_generation is supported which allows
the user to call a function (with a single parameter) after each
generation. Here is a simple function that just prints the current
generation number and the fitness value of the best solution in the
current generation. The generations_completed attribute of the GA
class returns the number of the last completed generation.

def on_gen(ga_instance):
    print("Generation : ", ga_instance.generations_completed)
    print("Fitness of the best solution :", ga_instance.best_solution()[1])





After being defined, the function is assigned to the on_generation
parameter of the GA class constructor. By doing that, the on_gen()
function will be called after each generation.

ga_instance = pygad.GA(...,
                       on_generation=on_gen,
                       ...)





After the parameters are prepared, we can import PyGAD and build an
instance of the pygad.GA class.




Import pygad

The next step is to import PyGAD as follows:

import pygad





The pygad.GA class holds the implementation of all methods for
running the genetic algorithm.



Create an Instance of the pygad.GA Class

The pygad.GA class is instantiated where the previously prepared
parameters are fed to its constructor. The constructor is responsible
for creating the initial population.

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       fitness_func=fitness_function,
                       sol_per_pop=sol_per_pop,
                       num_genes=num_genes,
                       init_range_low=init_range_low,
                       init_range_high=init_range_high,
                       parent_selection_type=parent_selection_type,
                       keep_parents=keep_parents,
                       crossover_type=crossover_type,
                       mutation_type=mutation_type,
                       mutation_percent_genes=mutation_percent_genes)







Run the Genetic Algorithm

After an instance of the pygad.GA class is created, the next step is
to call the run() method as follows:

ga_instance.run()





Inside this method, the genetic algorithm evolves over some generations
by doing the following tasks:


	Calculating the fitness values of the solutions within the current
population.


	Select the best solutions as parents in the mating pool.


	Apply the crossover & mutation operation


	Repeat the process for the specified number of generations.






Plotting Results

There is a method named plot_fitness() which creates a figure
summarizing how the fitness values of the solutions change with the
generations.

ga_instance.plot_fitness()
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Information about the Best Solution

The following information about the best solution in the last population
is returned using the best_solution() method.


	Solution


	Fitness value of the solution


	Index of the solution within the population




solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")





Using the best_solution_generation attribute of the instance from
the pygad.GA class, the generation number at which the
best fitness is reached could be fetched.

if ga_instance.best_solution_generation != -1:
    print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")







Saving & Loading the Results

After the run() method completes, it is possible to save the current
instance of the genetic algorithm to avoid losing the progress made. The
save() method is available for that purpose. Just pass the file name
to it without an extension. According to the next code, a file named
genetic.pkl will be created and saved in the current directory.

filename = 'genetic'
ga_instance.save(filename=filename)





You can also load the saved model using the load() function and
continue using it. For example, you might run the genetic algorithm for
some generations, save its current state using the save() method,
load the model using the load() function, and then call the
run() method again.

loaded_ga_instance = pygad.load(filename=filename)





After the instance is loaded, you can use it to run any method or access
any property.

print(loaded_ga_instance.best_solution())








Life Cycle of PyGAD

The next figure lists the different stages in the lifecycle of an
instance of the pygad.GA class. Note that PyGAD stops when either
all generations are completed or when the function passed to the
on_generation parameter returns the string stop.
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The next code implements all the callback functions to trace the
execution of the genetic algorithm. Each callback function prints its
name.

import pygad
import numpy

function_inputs = [4,-2,3.5,5,-11,-4.7]
desired_output = 44

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution*function_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

fitness_function = fitness_func

def on_start(ga_instance):
    print("on_start()")

def on_fitness(ga_instance, population_fitness):
    print("on_fitness()")

def on_parents(ga_instance, selected_parents):
    print("on_parents()")

def on_crossover(ga_instance, offspring_crossover):
    print("on_crossover()")

def on_mutation(ga_instance, offspring_mutation):
    print("on_mutation()")

def on_generation(ga_instance):
    print("on_generation()")

def on_stop(ga_instance, last_population_fitness):
    print("on_stop()")

ga_instance = pygad.GA(num_generations=3,
                       num_parents_mating=5,
                       fitness_func=fitness_function,
                       sol_per_pop=10,
                       num_genes=len(function_inputs),
                       on_start=on_start,
                       on_fitness=on_fitness,
                       on_parents=on_parents,
                       on_crossover=on_crossover,
                       on_mutation=on_mutation,
                       on_generation=on_generation,
                       on_stop=on_stop)

ga_instance.run()





Based on the used 3 generations as assigned to the num_generations
argument, here is the output.

on_start()

on_fitness()
on_parents()
on_crossover()
on_mutation()
on_generation()

on_fitness()
on_parents()
on_crossover()
on_mutation()
on_generation()

on_fitness()
on_parents()
on_crossover()
on_mutation()
on_generation()

on_stop()







Examples

This section gives the complete code of some examples that use
pygad. Each subsection builds a different example.


Linear Model Optimization - Single Objective

This example is discussed in the Steps to Use
PyGAD [https://pygad.readthedocs.io/en/latest/pygad.html#steps-to-use-pygad]
section which optimizes a linear model. Its complete code is listed
below.

import pygad
import numpy

"""
Given the following function:
    y = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + 6wx6
    where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7) and y=44
What are the best values for the 6 weights (w1 to w6)? We are going to use the genetic algorithm to optimize this function.
"""

function_inputs = [4,-2,3.5,5,-11,-4.7] # Function inputs.
desired_output = 44 # Function output.

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution*function_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

num_generations = 100 # Number of generations.
num_parents_mating = 10 # Number of solutions to be selected as parents in the mating pool.

sol_per_pop = 20 # Number of solutions in the population.
num_genes = len(function_inputs)

last_fitness = 0
def on_generation(ga_instance):
    global last_fitness
    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]}")
    print(f"Change     = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1] - last_fitness}")
    last_fitness = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       sol_per_pop=sol_per_pop,
                       num_genes=num_genes,
                       fitness_func=fitness_func,
                       on_generation=on_generation)

# Running the GA to optimize the parameters of the function.
ga_instance.run()

ga_instance.plot_fitness()

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution(ga_instance.last_generation_fitness)
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

prediction = numpy.sum(numpy.array(function_inputs)*solution)
print(f"Predicted output based on the best solution : {prediction}")

if ga_instance.best_solution_generation != -1:
    print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")

# Saving the GA instance.
filename = 'genetic' # The filename to which the instance is saved. The name is without extension.
ga_instance.save(filename=filename)

# Loading the saved GA instance.
loaded_ga_instance = pygad.load(filename=filename)
loaded_ga_instance.plot_fitness()







Linear Model Optimization - Multi-Objective

This is a multi-objective optimization example that optimizes these 2
functions:


	y1 = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + 6wx6


	y2 = f(w1:w6) = w1x7 + w2x8 + w3x9 + w4x10 + w5x11 + 6wx12




Where:


	(x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7) and y=50


	(x7,x8,x9,x10,x11,x12)=(-2,0.7,-9,1.4,3,5) and y=30




The 2 functions use the same parameters (weights) w1 to w6.

The goal is to use PyGAD to find the optimal values for such weights
that satisfy the 2 functions y1 and y2.

To use PyGAD to solve multi-objective problems, the only adjustment is
to return a list, tuple, or numpy.ndarray from the fitness
function. Each element represents the fitness of an objective in order.
That is the first element is the fitness of the first objective, the
second element is the fitness for the second objective, and so on.

import pygad
import numpy

"""
Given these 2 functions:
    y1 = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + 6wx6
    y2 = f(w1:w6) = w1x7 + w2x8 + w3x9 + w4x10 + w5x11 + 6wx12
    where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7) and y=50
    and   (x7,x8,x9,x10,x11,x12)=(-2,0.7,-9,1.4,3,5) and y=30
What are the best values for the 6 weights (w1 to w6)? We are going to use the genetic algorithm to optimize these 2 functions.
This is a multi-objective optimization problem.

PyGAD considers the problem as multi-objective if the fitness function returns:
    1) List.
    2) Or tuple.
    3) Or numpy.ndarray.
"""

function_inputs1 = [4,-2,3.5,5,-11,-4.7] # Function 1 inputs.
function_inputs2 = [-2,0.7,-9,1.4,3,5] # Function 2 inputs.
desired_output1 = 50 # Function 1 output.
desired_output2 = 30 # Function 2 output.

def fitness_func(ga_instance, solution, solution_idx):
    output1 = numpy.sum(solution*function_inputs1)
    output2 = numpy.sum(solution*function_inputs2)
    fitness1 = 1.0 / (numpy.abs(output1 - desired_output1) + 0.000001)
    fitness2 = 1.0 / (numpy.abs(output2 - desired_output2) + 0.000001)
    return [fitness1, fitness2]

num_generations = 100
num_parents_mating = 10

sol_per_pop = 20
num_genes = len(function_inputs1)

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       sol_per_pop=sol_per_pop,
                       num_genes=num_genes,
                       fitness_func=fitness_func,
                       parent_selection_type='nsga2')

ga_instance.run()

ga_instance.plot_fitness(label=['Obj 1', 'Obj 2'])

solution, solution_fitness, solution_idx = ga_instance.best_solution(ga_instance.last_generation_fitness)
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")

prediction = numpy.sum(numpy.array(function_inputs1)*solution)
print(f"Predicted output 1 based on the best solution : {prediction}")
prediction = numpy.sum(numpy.array(function_inputs2)*solution)
print(f"Predicted output 2 based on the best solution : {prediction}")





This is the result of the print statements. The predicted outputs are
close to the desired outputs.

Parameters of the best solution : [ 0.79676439 -2.98823386 -4.12677662  5.70539445 -2.02797016 -1.07243922]
Fitness value of the best solution = [  1.68090829 349.8591915 ]
Predicted output 1 based on the best solution : 50.59491545442283
Predicted output 2 based on the best solution : 29.99714270722312





This is the figure created by the plot_fitness() method. The fitness
of the first objective has the green color. The blue color is used for
the second objective fitness.
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Reproducing Images

This project reproduces a single image using PyGAD by evolving pixel
values. This project works with both color and gray images. Check this
project at GitHub [https://github.com/ahmedfgad/GARI]:
https://github.com/ahmedfgad/GARI.

For more information about this project, read this tutorial titled
Reproducing Images using a Genetic Algorithm with
Python [https://www.linkedin.com/pulse/reproducing-images-using-genetic-algorithm-python-ahmed-gad]
available at these links:


	Heartbeat [https://heartbeat.fritz.ai/reproducing-images-using-a-genetic-algorithm-with-python-91fc701ff84]:
https://heartbeat.fritz.ai/reproducing-images-using-a-genetic-algorithm-with-python-91fc701ff84


	LinkedIn [https://www.linkedin.com/pulse/reproducing-images-using-genetic-algorithm-python-ahmed-gad]:
https://www.linkedin.com/pulse/reproducing-images-using-genetic-algorithm-python-ahmed-gad





Project Steps

The steps to follow in order to reproduce an image are as follows:


	Read an image


	Prepare the fitness function


	Create an instance of the pygad.GA class with the appropriate
parameters


	Run PyGAD


	Plot results


	Calculate some statistics




The next sections discusses the code of each of these steps.



Read an Image

There is an image named fruit.jpg in the GARI
project [https://github.com/ahmedfgad/GARI] which is read according
to the next code.

import imageio
import numpy

target_im = imageio.imread('fruit.jpg')
target_im = numpy.asarray(target_im/255, dtype=float)





Here is the read image.
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Based on the chromosome representation used in the example, the pixel
values can be either in the 0-255, 0-1, or any other ranges.

Note that the range of pixel values affect other parameters like the
range from which the random values are selected during mutation and also
the range of the values used in the initial population. So, be
consistent.



Prepare the Fitness Function

The next code creates a function that will be used as a fitness function
for calculating the fitness value for each solution in the population.
This function must be a maximization function that accepts 3 parameters
representing the instance of the pygad.GA class, a solution, and its
index. It returns a value representing the fitness value.

import gari

target_chromosome = gari.img2chromosome(target_im)

def fitness_fun(ga_instance, solution, solution_idx):
    fitness = numpy.sum(numpy.abs(target_chromosome-solution))

    # Negating the fitness value to make it increasing rather than decreasing.
    fitness = numpy.sum(target_chromosome) - fitness
    return fitness





The fitness value is calculated using the sum of absolute difference
between genes values in the original and reproduced chromosomes. The
gari.img2chromosome() function is called before the fitness function
to represent the image as a vector because the genetic algorithm can
work with 1D chromosomes.

The implementation of the gari module is available at the GARI
GitHub
project [https://github.com/ahmedfgad/GARI/blob/master/gari.py] and
its code is listed below.

import numpy
import functools
import operator

def img2chromosome(img_arr):
    return numpy.reshape(a=img_arr, newshape=(functools.reduce(operator.mul, img_arr.shape)))

def chromosome2img(vector, shape):
    if len(vector) != functools.reduce(operator.mul, shape):
        raise ValueError(f"A vector of length {len(vector)} into an array of shape {shape}.")

    return numpy.reshape(a=vector, newshape=shape)







Create an Instance of the pygad.GA Class

It is very important to use random mutation and set the
mutation_by_replacement to True. Based on the range of pixel
values, the values assigned to the init_range_low,
init_range_high, random_mutation_min_val, and
random_mutation_max_val parameters should be changed.

If the image pixel values range from 0 to 255, then set
init_range_low and random_mutation_min_val to 0 as they are but
change init_range_high and random_mutation_max_val to 255.

Feel free to change the other parameters or add other parameters. Please
check the PyGAD’s documentation [https://pygad.readthedocs.io] for
the full list of parameters.

import pygad

ga_instance = pygad.GA(num_generations=20000,
                       num_parents_mating=10,
                       fitness_func=fitness_fun,
                       sol_per_pop=20,
                       num_genes=target_im.size,
                       init_range_low=0.0,
                       init_range_high=1.0,
                       mutation_percent_genes=0.01,
                       mutation_type="random",
                       mutation_by_replacement=True,
                       random_mutation_min_val=0.0,
                       random_mutation_max_val=1.0)







Run PyGAD

Simply, call the run() method to run PyGAD.

ga_instance.run()







Plot Results

After the run() method completes, the fitness values of all
generations can be viewed in a plot using the plot_fitness() method.

ga_instance.plot_fitness()





Here is the plot after 20,000 generations.

[image: ]


Calculate Some Statistics

Here is some information about the best solution.

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

if ga_instance.best_solution_generation != -1:
    print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")

result = gari.chromosome2img(solution, target_im.shape)
matplotlib.pyplot.imshow(result)
matplotlib.pyplot.title("PyGAD & GARI for Reproducing Images")
matplotlib.pyplot.show()







Evolution by Generation

The solution reached after the 20,000 generations is shown below.
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After more generations, the result can be enhanced like what shown
below.
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The results can also be enhanced by changing the parameters passed to
the constructor of the pygad.GA class.

Here is how the image is evolved from generation 0 to generation
20,000s.

Generation 0
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Generation 1,000
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Generation 2,500
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Generation 4,500
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Generation 7,000
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Generation 8,000
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Generation 20,000
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Clustering

For a 2-cluster problem, the code is available
here [https://github.com/ahmedfgad/GeneticAlgorithmPython/blob/master/example_clustering_2.py].
For a 3-cluster problem, the code is
here [https://github.com/ahmedfgad/GeneticAlgorithmPython/blob/master/example_clustering_3.py].
The 2 examples are using artificial samples.

Soon a tutorial will be published at
Paperspace [https://blog.paperspace.com/author/ahmed] to explain how
clustering works using the genetic algorithm with examples in PyGAD.



CoinTex Game Playing using PyGAD

The code is available the CoinTex GitHub
project [https://github.com/ahmedfgad/CoinTex/tree/master/PlayerGA].
CoinTex is an Android game written in Python using the Kivy framework.
Find CoinTex at Google
Play [https://play.google.com/store/apps/details?id=coin.tex.cointexreactfast]:
https://play.google.com/store/apps/details?id=coin.tex.cointexreactfast

Check this Paperspace
tutorial [https://blog.paperspace.com/building-agent-for-cointex-using-genetic-algorithm]
for how the genetic algorithm plays CoinTex:
https://blog.paperspace.com/building-agent-for-cointex-using-genetic-algorithm.
Check also this YouTube video [https://youtu.be/Sp_0RGjaL-0] showing
the genetic algorithm while playing CoinTex.





            

          

      

      

    

  

    
      
          
            
  
More About PyGAD



Multi-Objective Optimization

In PyGAD
3.2.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-3-2-0],
the library supports multi-objective optimization using the
non-dominated sorting genetic algorithm II (NSGA-II). The code is
exactly similar to the regular code used for single-objective
optimization except for 1 difference. It is the return value of the
fitness function.

In single-objective optimization, the fitness function returns a single
numeric value. In this example, the variable fitness is expected to
be a numeric value.

def fitness_func(ga_instance, solution, solution_idx):
    ...
    return fitness





But in multi-objective optimization, the fitness function returns any of
these data types:


	list


	tuple


	numpy.ndarray




def fitness_func(ga_instance, solution, solution_idx):
    ...
    return [fitness1, fitness2, ..., fitnessN]





Whenever the fitness function returns an iterable of these data types,
then the problem is considered multi-objective. This holds even if there
is a single element in the returned iterable.

Other than the fitness function, everything else could be the same in
both single and multi-objective problems.

But it is recommended to use one of these 2 parent selection operators
to solve multi-objective problems:


	nsga2: This selects the parents based on non-dominated sorting
and crowding distance.


	tournament_nsga2: This selects the parents using tournament
selection which uses non-dominated sorting and crowding distance to
rank the solutions.




This is a multi-objective optimization example that optimizes these 2
linear functions:


	y1 = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + 6wx6


	y2 = f(w1:w6) = w1x7 + w2x8 + w3x9 + w4x10 + w5x11 + 6wx12




Where:


	(x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7) and y=50


	(x7,x8,x9,x10,x11,x12)=(-2,0.7,-9,1.4,3,5) and y=30




The 2 functions use the same parameters (weights) w1 to w6.

The goal is to use PyGAD to find the optimal values for such weights
that satisfy the 2 functions y1 and y2.

import pygad
import numpy

"""
Given these 2 functions:
    y1 = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + 6wx6
    y2 = f(w1:w6) = w1x7 + w2x8 + w3x9 + w4x10 + w5x11 + 6wx12
    where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7) and y=50
    and   (x7,x8,x9,x10,x11,x12)=(-2,0.7,-9,1.4,3,5) and y=30
What are the best values for the 6 weights (w1 to w6)? We are going to use the genetic algorithm to optimize these 2 functions.
This is a multi-objective optimization problem.

PyGAD considers the problem as multi-objective if the fitness function returns:
    1) List.
    2) Or tuple.
    3) Or numpy.ndarray.
"""

function_inputs1 = [4,-2,3.5,5,-11,-4.7] # Function 1 inputs.
function_inputs2 = [-2,0.7,-9,1.4,3,5] # Function 2 inputs.
desired_output1 = 50 # Function 1 output.
desired_output2 = 30 # Function 2 output.

def fitness_func(ga_instance, solution, solution_idx):
    output1 = numpy.sum(solution*function_inputs1)
    output2 = numpy.sum(solution*function_inputs2)
    fitness1 = 1.0 / (numpy.abs(output1 - desired_output1) + 0.000001)
    fitness2 = 1.0 / (numpy.abs(output2 - desired_output2) + 0.000001)
    return [fitness1, fitness2]

num_generations = 100
num_parents_mating = 10

sol_per_pop = 20
num_genes = len(function_inputs1)

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       sol_per_pop=sol_per_pop,
                       num_genes=num_genes,
                       fitness_func=fitness_func,
                       parent_selection_type='nsga2')

ga_instance.run()

ga_instance.plot_fitness(label=['Obj 1', 'Obj 2'])

solution, solution_fitness, solution_idx = ga_instance.best_solution(ga_instance.last_generation_fitness)
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")

prediction = numpy.sum(numpy.array(function_inputs1)*solution)
print(f"Predicted output 1 based on the best solution : {prediction}")
prediction = numpy.sum(numpy.array(function_inputs2)*solution)
print(f"Predicted output 2 based on the best solution : {prediction}")





This is the result of the print statements. The predicted outputs are
close to the desired outputs.

Parameters of the best solution : [ 0.79676439 -2.98823386 -4.12677662  5.70539445 -2.02797016 -1.07243922]
Fitness value of the best solution = [  1.68090829 349.8591915 ]
Predicted output 1 based on the best solution : 50.59491545442283
Predicted output 2 based on the best solution : 29.99714270722312





This is the figure created by the plot_fitness() method. The fitness
of the first objective has the green color. The blue color is used for
the second objective fitness.

[image: ]


Limit the Gene Value Range using the gene_space Parameter

In PyGAD
2.11.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-11-0],
the gene_space parameter supported a new feature to allow
customizing the range of accepted values for each gene. Let’s take a
quick review of the gene_space parameter to build over it.

The gene_space parameter allows the user to feed the space of values
of each gene. This way the accepted values for each gene is retracted to
the user-defined values. Assume there is a problem that has 3 genes
where each gene has different set of values as follows:


	Gene 1: [0.4, 12, -5, 21.2]


	Gene 2: [-2, 0.3]


	Gene 3: [1.2, 63.2, 7.4]




Then, the gene_space for this problem is as given below. Note that
the order is very important.

gene_space = [[0.4, 12, -5, 21.2],
              [-2, 0.3],
              [1.2, 63.2, 7.4]]





In case all genes share the same set of values, then simply feed a
single list to the gene_space parameter as follows. In this case,
all genes can only take values from this list of 6 values.

gene_space = [33, 7, 0.5, 95. 6.3, 0.74]





The previous example restricts the gene values to just a set of fixed
number of discrete values. In case you want to use a range of discrete
values to the gene, then you can use the range() function. For
example, range(1, 7) means the set of allowed values for the gene
are 1, 2, 3, 4, 5, and 6. You can also use the numpy.arange() or
numpy.linspace() functions for the same purpose.

The previous discussion only works with a range of discrete values not
continuous values. In PyGAD
2.11.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-11-0],
the gene_space parameter can be assigned a dictionary that allows
the gene to have values from a continuous range.

Assuming you want to restrict the gene within this half-open range [1 to
5) where 1 is included and 5 is not. Then simply create a dictionary
with 2 items where the keys of the 2 items are:


	'low': The minimum value in the range which is 1 in the example.


	'high': The maximum value in the range which is 5 in the example.




The dictionary will look like that:

{'low': 1,
 'high': 5}





It is not acceptable to add more than 2 items in the dictionary or use
other keys than 'low' and 'high'.

For a 3-gene problem, the next code creates a dictionary for each gene
to restrict its values in a continuous range. For the first gene, it can
take any floating-point value from the range that starts from 1
(inclusive) and ends at 5 (exclusive).

gene_space = [{'low': 1, 'high': 5}, {'low': 0.3, 'high': 1.4}, {'low': -0.2, 'high': 4.5}]







More about the gene_space Parameter

The gene_space parameter customizes the space of values of each
gene.

Assuming that all genes have the same global space which include the
values 0.3, 5.2, -4, and 8, then those values can be assigned to the
gene_space parameter as a list, tuple, or range. Here is a list
assigned to this parameter. By doing that, then the gene values are
restricted to those assigned to the gene_space parameter.

gene_space = [0.3, 5.2, -4, 8]





If some genes have different spaces, then gene_space should accept a
nested list or tuple. In this case, the elements could be:


	Number (of int, float, or NumPy data types): A single
value to be assigned to the gene. This means this gene will have the
same value across all generations.


	list, tuple, numpy.ndarray, or any range like range,
numpy.arange(), or numpy.linspace: It holds the space for
each individual gene. But this space is usually discrete. That is
there is a set of finite values to select from.


	dict: To sample a value for a gene from a continuous range. The
dictionary must have 2 mandatory keys which are "low" and
"high" in addition to an optional key which is "step". A
random value is returned between the values assigned to the items
with "low" and "high" keys. If the "step" exists, then
this works as the previous options (i.e. discrete set of values).


	None: A gene with its space set to None is initialized
randomly from the range specified by the 2 parameters
init_range_low and init_range_high. For mutation, its value
is mutated based on a random value from the range specified by the 2
parameters random_mutation_min_val and
random_mutation_max_val. If all elements in the gene_space
parameter are None, the parameter will not have any effect.




Assuming that a chromosome has 2 genes and each gene has a different
value space. Then the gene_space could be assigned a nested
list/tuple where each element determines the space of a gene.

According to the next code, the space of the first gene is [0.4, -5]
which has 2 values and the space for the second gene is
[0.5, -3.2, 8.8, -9] which has 4 values.

gene_space = [[0.4, -5], [0.5, -3.2, 8.2, -9]]





For a 2 gene chromosome, if the first gene space is restricted to the
discrete values from 0 to 4 and the second gene is restricted to the
values from 10 to 19, then it could be specified according to the next
code.

gene_space = [range(5), range(10, 20)]





The gene_space can also be assigned to a single range, as given
below, where the values of all genes are sampled from the same range.

gene_space = numpy.arange(15)





The gene_space can be assigned a dictionary to sample a value from a
continuous range.

gene_space = {"low": 4, "high": 30}





A step also can be assigned to the dictionary. This works as if a range
is used.

gene_space = {"low": 4, "high": 30, "step": 2.5}






Setting a dict like {"low": 0, "high": 10} in the
gene_space means that random values from the continuous range [0,
10) are sampled. Note that 0 is included but 10 is not
included while sampling. Thus, the maximum value that could be
returned is less than 10 like 9.9999. But if the user decided
to round the genes using, for example, [float, 2], then this
value will become 10. So, the user should be careful to the inputs.




If a None is assigned to only a single gene, then its value will be
randomly generated initially using the init_range_low and
init_range_high parameters in the pygad.GA class’s constructor.
During mutation, the value are sampled from the range defined by the 2
parameters random_mutation_min_val and random_mutation_max_val.
This is an example where the second gene is given a None value.

gene_space = [range(5), None, numpy.linspace(10, 20, 300)]





If the user did not assign the initial population to the
initial_population parameter, the initial population is created
randomly based on the gene_space parameter. Moreover, the mutation
is applied based on this parameter.


How Mutation Works with the gene_space Parameter?

Mutation changes based on whether the gene_space has a continuous
range or discrete set of values.

If a gene has its static/discrete space defined in the
gene_space parameter, then mutation works by replacing the gene
value by a value randomly selected from the gene space. This happens for
both int and float data types.

For example, the following gene_space has the static space
[1, 2, 3] defined for the first gene. So, this gene can only have a
value out of these 3 values.

Gene space: [[1, 2, 3],
             None]
Solution: [1, 5]





For a solution like [1, 5], then mutation happens for the first gene
by simply replacing its current value by a randomly selected value
(other than its current value if possible). So, the value 1 will be
replaced by either 2 or 3.

For the second gene, its space is set to None. So, traditional
mutation happens for this gene by:


	Generating a random value from the range defined by the
random_mutation_min_val and random_mutation_max_val
parameters.


	Adding this random value to the current gene’s value.




If its current value is 5 and the random value is -0.5, then the new
value is 4.5. If the gene type is integer, then the value will be
rounded.

On the other hand, if a gene has a continuous space defined in the
gene_space parameter, then mutation occurs by adding a random value
to the current gene value.

For example, the following gene_space has the continuous space
defined by the dictionary {'low': 1, 'high': 5}. This applies to all
genes. So, mutation is applied to one or more selected genes by adding a
random value to the current gene value.

Gene space: {'low': 1, 'high': 5}
Solution: [1.5, 3.4]





Assuming random_mutation_min_val=-1 and
random_mutation_max_val=1, then a random value such as 0.3 can
be added to the gene(s) participating in mutation. If only the first
gene is mutated, then its new value changes from 1.5 to
1.5+0.3=1.8. Note that PyGAD verifies that the new value is within
the range. In the worst scenarios, the value will be set to either
boundary of the continuous range. For example, if the gene value is 1.5
and the random value is -0.55, then the new value is 0.95 which smaller
than the lower boundary 1. Thus, the gene value will be rounded to 1.

If the dictionary has a step like the example below, then it is
considered a discrete range and mutation occurs by randomly selecting a
value from the set of values. In other words, no random value is added
to the gene value.

Gene space: {'low': 1, 'high': 5, 'step': 0.5}








Stop at Any Generation

In PyGAD
2.4.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-4-0],
it is possible to stop the genetic algorithm after any generation. All
you need to do it to return the string "stop" in the callback
function on_generation. When this callback function is implemented
and assigned to the on_generation parameter in the constructor of
the pygad.GA class, then the algorithm immediately stops after
completing its current generation. Let’s discuss an example.

Assume that the user wants to stop algorithm either after the 100
generations or if a condition is met. The user may assign a value of 100
to the num_generations parameter of the pygad.GA class
constructor.

The condition that stops the algorithm is written in a callback function
like the one in the next code. If the fitness value of the best solution
exceeds 70, then the string "stop" is returned.

def func_generation(ga_instance):
    if ga_instance.best_solution()[1] >= 70:
        return "stop"







Stop Criteria

In PyGAD
2.15.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-15-0],
a new parameter named stop_criteria is added to the constructor of
the pygad.GA class. It helps to stop the evolution based on some
criteria. It can be assigned to one or more criterion.

Each criterion is passed as str that consists of 2 parts:


	Stop word.


	Number.




It takes this form:

"word_num"





The current 2 supported words are reach and saturate.

The reach word stops the run() method if the fitness value is
equal to or greater than a given fitness value. An example for reach
is "reach_40" which stops the evolution if the fitness is >= 40.

saturate stops the evolution if the fitness saturates for a given
number of consecutive generations. An example for saturate is
"saturate_7" which means stop the run() method if the fitness
does not change for 7 consecutive generations.

Here is an example that stops the evolution if either the fitness value
reached 127.4 or if the fitness saturates for 15 generations.

import pygad
import numpy

equation_inputs = [4, -2, 3.5, 8, 9, 4]
desired_output = 44

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)

    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)

    return fitness

ga_instance = pygad.GA(num_generations=200,
                       sol_per_pop=10,
                       num_parents_mating=4,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       stop_criteria=["reach_127.4", "saturate_15"])

ga_instance.run()
print(f"Number of generations passed is {ga_instance.generations_completed}")







Elitism Selection

In PyGAD
2.18.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-18-0],
a new parameter called keep_elitism is supported. It accepts an
integer to define the number of elitism (i.e. best solutions) to keep in
the next generation. This parameter defaults to 1 which means only
the best solution is kept in the next generation.

In the next example, the keep_elitism parameter in the constructor
of the pygad.GA class is set to 2. Thus, the best 2 solutions in
each generation are kept in the next generation.

import numpy
import pygad

function_inputs = [4,-2,3.5,5,-11,-4.7]
desired_output = 44

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution*function_inputs)
    fitness = 1.0 / numpy.abs(output - desired_output)
    return fitness

ga_instance = pygad.GA(num_generations=2,
                       num_parents_mating=3,
                       fitness_func=fitness_func,
                       num_genes=6,
                       sol_per_pop=5,
                       keep_elitism=2)

ga_instance.run()





The value passed to the keep_elitism parameter must satisfy 2
conditions:


	It must be >= 0.


	It must be <= sol_per_pop. That is its value cannot exceed the
number of solutions in the current population.




In the previous example, if the keep_elitism parameter is set equal
to the value passed to the sol_per_pop parameter, which is 5, then
there will be no evolution at all as in the next figure. This is because
all the 5 solutions are used as elitism in the next generation and no
offspring will be created.

...

ga_instance = pygad.GA(...,
                       sol_per_pop=5,
                       keep_elitism=5)

ga_instance.run()





[image: ]
Note that if the keep_elitism parameter is effective (i.e. is
assigned a positive integer, not zero), then the keep_parents
parameter will have no effect. Because the default value of the
keep_elitism parameter is 1, then the keep_parents parameter has
no effect by default. The keep_parents parameter is only effective
when keep_elitism=0.



Random Seed

In PyGAD
2.18.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-18-0],
a new parameter called random_seed is supported. Its value is used
as a seed for the random function generators.

PyGAD uses random functions in these 2 libraries:


	NumPy


	random




The random_seed parameter defaults to None which means no seed
is used. As a result, different random numbers are generated for each
run of PyGAD.

If this parameter is assigned a proper seed, then the results will be
reproducible. In the next example, the integer 2 is used as a random
seed.

import numpy
import pygad

function_inputs = [4,-2,3.5,5,-11,-4.7]
desired_output = 44

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution*function_inputs)
    fitness = 1.0 / numpy.abs(output - desired_output)
    return fitness

ga_instance = pygad.GA(num_generations=2,
                       num_parents_mating=3,
                       fitness_func=fitness_func,
                       sol_per_pop=5,
                       num_genes=6,
                       random_seed=2)

ga_instance.run()
best_solution, best_solution_fitness, best_match_idx = ga_instance.best_solution()
print(best_solution)
print(best_solution_fitness)





This is the best solution found and its fitness value.

[ 2.77249188 -4.06570662  0.04196872 -3.47770796 -0.57502138 -3.22775267]
0.04872203136549972





After running the code again, it will find the same result.

[ 2.77249188 -4.06570662  0.04196872 -3.47770796 -0.57502138 -3.22775267]
0.04872203136549972





Continue without Losing Progress

In PyGAD
2.18.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-18-0],
and thanks for Felix Bernhard [https://github.com/FeBe95] for
opening this GitHub
issue [https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/123#issuecomment-1203035106],
the values of these 4 instance attributes are no longer reset after each
call to the run() method.


	self.best_solutions


	self.best_solutions_fitness


	self.solutions


	self.solutions_fitness




This helps the user to continue where the last run stopped without
losing the values of these 4 attributes.

Now, the user can save the model by calling the save() method.

import pygad

def fitness_func(ga_instance, solution, solution_idx):
    ...
    return fitness

ga_instance = pygad.GA(...)

ga_instance.run()

ga_instance.plot_fitness()

ga_instance.save("pygad_GA")





Then the saved model is loaded by calling the load() function. After
calling the run() method over the loaded instance, then the data
from the previous 4 attributes are not reset but extended with the new
data.

import pygad

def fitness_func(ga_instance, solution, solution_idx):
    ...
    return fitness

loaded_ga_instance = pygad.load("pygad_GA")

loaded_ga_instance.run()

loaded_ga_instance.plot_fitness()





The plot created by the plot_fitness() method will show the data
collected from both the runs.

Note that the 2 attributes (self.best_solutions and
self.best_solutions_fitness) only work if the
save_best_solutions parameter is set to True. Also, the 2
attributes (self.solutions and self.solutions_fitness) only work
if the save_solutions parameter is True.



Change Population Size during Runtime

Starting from PyGAD
3.3.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-3-3-0],
the population size can changed during runtime. In other words, the
number of solutions/chromosomes and number of genes can be changed.

The user has to carefully arrange the list of parameters and instance
attributes that have to be changed to keep the GA consistent before and
after changing the population size. Generally, change everything that
would be used during the GA evolution.


CAUTION: If the user failed to change a parameter or an instance
attributes necessary to keep the GA running after the population size
changed, errors will arise.




These are examples of the parameters that the user should decide whether
to change. The user should check the list of
parameters [https://pygad.readthedocs.io/en/latest/pygad.html#init]
and decide what to change.


	population: The population. It must be changed.


	num_offspring: The number of offspring to produce out of the
crossover and mutation operations. Change this parameter if the
number of offspring have to be changed to be consistent with the new
population size.


	num_parents_mating: The number of solutions to select as parents.
Change this parameter if the number of parents have to be changed to
be consistent with the new population size.


	fitness_func: If the way of calculating the fitness changes after
the new population size, then the fitness function have to be
changed.


	sol_per_pop: The number of solutions per population. It is not
critical to change it but it is recommended to keep this number
consistent with the number of solutions in the population
parameter.




These are examples of the instance attributes that might be changed. The
user should check the list of instance
attributes [https://pygad.readthedocs.io/en/latest/pygad.html#other-instance-attributes-methods]
and decide what to change.


	All the last_generation_* parameters


	last_generation_fitness: A 1D NumPy array of fitness values of
the population.


	last_generation_parents and
last_generation_parents_indices: Two NumPy arrays: 2D array
representing the parents and 1D array of the parents indices.


	last_generation_elitism and
last_generation_elitism_indices: Must be changed if
keep_elitism != 0. The default value of keep_elitism is 1.
Two NumPy arrays: 2D array representing the elitism and 1D array
of the elitism indices.






	pop_size: The population size.






Prevent Duplicates in Gene Values

In PyGAD
2.13.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-13-0],
a new bool parameter called allow_duplicate_genes is supported to
control whether duplicates are supported in the chromosome or not. In
other words, whether 2 or more genes might have the same exact value.

If allow_duplicate_genes=True (which is the default case), genes may
have the same value. If allow_duplicate_genes=False, then no 2 genes
will have the same value given that there are enough unique values for
the genes.

The next code gives an example to use the allow_duplicate_genes
parameter. A callback generation function is implemented to print the
population after each generation.

import pygad

def fitness_func(ga_instance, solution, solution_idx):
    return 0

def on_generation(ga):
    print("Generation", ga.generations_completed)
    print(ga.population)

ga_instance = pygad.GA(num_generations=5,
                       sol_per_pop=5,
                       num_genes=4,
                       mutation_num_genes=3,
                       random_mutation_min_val=-5,
                       random_mutation_max_val=5,
                       num_parents_mating=2,
                       fitness_func=fitness_func,
                       gene_type=int,
                       on_generation=on_generation,
                       allow_duplicate_genes=False)
ga_instance.run()





Here are the population after the 5 generations. Note how there are no
duplicate values.

Generation 1
[[ 2 -2 -3  3]
 [ 0  1  2  3]
 [ 5 -3  6  3]
 [-3  1 -2  4]
 [-1  0 -2  3]]
Generation 2
[[-1  0 -2  3]
 [-3  1 -2  4]
 [ 0 -3 -2  6]
 [-3  0 -2  3]
 [ 1 -4  2  4]]
Generation 3
[[ 1 -4  2  4]
 [-3  0 -2  3]
 [ 4  0 -2  1]
 [-4  0 -2 -3]
 [-4  2  0  3]]
Generation 4
[[-4  2  0  3]
 [-4  0 -2 -3]
 [-2  5  4 -3]
 [-1  2 -4  4]
 [-4  2  0 -3]]
Generation 5
[[-4  2  0 -3]
 [-1  2 -4  4]
 [ 3  4 -4  0]
 [-1  0  2 -2]
 [-4  2 -1  1]]





The allow_duplicate_genes parameter is configured with use with the
gene_space parameter. Here is an example where each of the 4 genes
has the same space of values that consists of 4 values (1, 2, 3, and 4).

import pygad

def fitness_func(ga_instance, solution, solution_idx):
    return 0

def on_generation(ga):
    print("Generation", ga.generations_completed)
    print(ga.population)

ga_instance = pygad.GA(num_generations=1,
                       sol_per_pop=5,
                       num_genes=4,
                       num_parents_mating=2,
                       fitness_func=fitness_func,
                       gene_type=int,
                       gene_space=[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]],
                       on_generation=on_generation,
                       allow_duplicate_genes=False)
ga_instance.run()





Even that all the genes share the same space of values, no 2 genes
duplicate their values as provided by the next output.

Generation 1
[[2 3 1 4]
 [2 3 1 4]
 [2 4 1 3]
 [2 3 1 4]
 [1 3 2 4]]
Generation 2
[[1 3 2 4]
 [2 3 1 4]
 [1 3 2 4]
 [2 3 4 1]
 [1 3 4 2]]
Generation 3
[[1 3 4 2]
 [2 3 4 1]
 [1 3 4 2]
 [3 1 4 2]
 [3 2 4 1]]
Generation 4
[[3 2 4 1]
 [3 1 4 2]
 [3 2 4 1]
 [1 2 4 3]
 [1 3 4 2]]
Generation 5
[[1 3 4 2]
 [1 2 4 3]
 [2 1 4 3]
 [1 2 4 3]
 [1 2 4 3]]





You should care of giving enough values for the genes so that PyGAD is
able to find alternatives for the gene value in case it duplicates with
another gene.

There might be 2 duplicate genes where changing either of the 2
duplicating genes will not solve the problem. For example, if
gene_space=[[3, 0, 1], [4, 1, 2], [0, 2], [3, 2, 0]] and the
solution is [3 2 0 0], then the values of the last 2 genes
duplicate. There are no possible changes in the last 2 genes to solve
the problem.

This problem can be solved by randomly changing one of the
non-duplicating genes that may make a room for a unique value in one the
2 duplicating genes. For example, by changing the second gene from 2 to
4, then any of the last 2 genes can take the value 2 and solve the
duplicates. The resultant gene is then [3 4 2 0]. But this option is
not yet supported in PyGAD.


Solve Duplicates using a Third Gene

When allow_duplicate_genes=False and a user-defined gene_space
is used, it sometimes happen that there is no room to solve the
duplicates between the 2 genes by simply replacing the value of one gene
by another gene. In PyGAD
3.1.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-3-0-1],
the duplicates are solved by looking for a third gene that will help in
solving the duplicates. The following examples explain how it works.

Example 1:

Let’s assume that this gene space is used and there is a solution with 2
duplicate genes with the same value 4.

Gene space: [[2, 3],
             [3, 4],
             [4, 5],
             [5, 6]]
Solution: [3, 4, 4, 5]





By checking the gene space, the second gene can have the values
[3, 4] and the third gene can have the values [4, 5]. To solve
the duplicates, we have the value of any of these 2 genes.

If the value of the second gene changes from 4 to 3, then it will be
duplicate with the first gene. If we are to change the value of the
third gene from 4 to 5, then it will duplicate with the fourth gene. As
a conclusion, trying to just selecting a different gene value for either
the second or third genes will introduce new duplicating genes.

When there are 2 duplicate genes but there is no way to solve their
duplicates, then the solution is to change a third gene that makes a
room to solve the duplicates between the 2 genes.

In our example, duplicates between the second and third genes can be
solved by, for example,:


	Changing the first gene from 3 to 2 then changing the second gene
from 4 to 3.


	Or changing the fourth gene from 5 to 6 then changing the third gene
from 4 to 5.




Generally, this is how to solve such duplicates:


	For any duplicate gene GENE1, select another value.


	Check which other gene GENEX has duplicate with this new value.


	Find if GENEX can have another value that will not cause any more
duplicates. If so, go to step 7.


	If all the other values of GENEX will cause duplicates, then try
another gene GENEY.


	Repeat steps 3 and 4 until exploring all the genes.


	If there is no possibility to solve the duplicates, then there is not
way to solve the duplicates and we have to keep the duplicate value.


	If a value for a gene GENEM is found that will not cause more
duplicates, then use this value for the gene GENEM.


	Replace the value of the gene GENE1 by the old value of the gene
GENEM. This solves the duplicates.




This is an example to solve the duplicate for the solution
[3, 4, 4, 5]:


	Let’s use the second gene with value 4. Because the space of this
gene is [3, 4], then the only other value we can select is 3.


	The first gene also have the value 3.


	The first gene has another value 2 that will not cause more
duplicates in the solution. Then go to step 7.


	Skip.


	Skip.


	Skip.


	The value of the first gene 3 will be replaced by the new value 2.
The new solution is [2, 4, 4, 5].


	Replace the value of the second gene 4 by the old value of the first
gene which is 3. The new solution is [2, 3, 4, 5]. The duplicate is
solved.




Example 2:

Gene space: [[0, 1],
             [1, 2],
             [2, 3],
             [3, 4]]
Solution: [1, 2, 2, 3]





The quick summary is:


	Change the value of the first gene from 1 to 0. The solution becomes
[0, 2, 2, 3].


	Change the value of the second gene from 2 to 1. The solution becomes
[0, 1, 2, 3]. The duplicate is solved.







More about the gene_type Parameter

The gene_type parameter allows the user to control the data type for
all genes at once or each individual gene. In PyGAD
2.15.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-15-0],
the gene_type parameter also supports customizing the precision for
float data types. As a result, the gene_type parameter helps to:


	Select a data type for all genes with or without precision.


	Select a data type for each individual gene with or without
precision.




Let’s discuss things by examples.


Data Type for All Genes without Precision

The data type for all genes can be specified by assigning the numeric
data type directly to the gene_type parameter. This is an example to
make all genes of int data types.

gene_type=int





Given that the supported numeric data types of PyGAD include Python’s
int and float in addition to all numeric types of NumPy,
then any of these types can be assigned to the gene_type parameter.

If no precision is specified for a float data type, then the
complete floating-point number is kept.

The next code uses an int data type for all genes where the genes in
the initial and final population are only integers.

import pygad
import numpy

equation_inputs = [4, -2, 3.5, 8, -2]
desired_output = 2671.1234

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=5,
                       num_parents_mating=2,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       gene_type=int)

print("Initial Population")
print(ga_instance.initial_population)

ga_instance.run()

print("Final Population")
print(ga_instance.population)





Initial Population
[[ 1 -1  2  0 -3]
 [ 0 -2  0 -3 -1]
 [ 0 -1 -1  2  0]
 [-2  3 -2  3  3]
 [ 0  0  2 -2 -2]]

Final Population
[[ 1 -1  2  2  0]
 [ 1 -1  2  2  0]
 [ 1 -1  2  2  0]
 [ 1 -1  2  2  0]
 [ 1 -1  2  2  0]]







Data Type for All Genes with Precision

A precision can only be specified for a float data type and cannot
be specified for integers. Here is an example to use a precision of 3
for the float data type. In this case, all genes are of type
float and their maximum precision is 3.

gene_type=[float, 3]





The next code uses prints the initial and final population where the
genes are of type float with precision 3.

import pygad
import numpy

equation_inputs = [4, -2, 3.5, 8, -2]
desired_output = 2671.1234

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)

    return fitness

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=5,
                       num_parents_mating=2,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       gene_type=[float, 3])

print("Initial Population")
print(ga_instance.initial_population)

ga_instance.run()

print("Final Population")
print(ga_instance.population)





Initial Population
[[-2.417 -0.487  3.623  2.457 -2.362]
 [-1.231  0.079 -1.63   1.629 -2.637]
 [ 0.692 -2.098  0.705  0.914 -3.633]
 [ 2.637 -1.339 -1.107 -0.781 -3.896]
 [-1.495  1.378 -1.026  3.522  2.379]]

Final Population
[[ 1.714 -1.024  3.623  3.185 -2.362]
 [ 0.692 -1.024  3.623  3.185 -2.362]
 [ 0.692 -1.024  3.623  3.375 -2.362]
 [ 0.692 -1.024  4.041  3.185 -2.362]
 [ 1.714 -0.644  3.623  3.185 -2.362]]







Data Type for each Individual Gene without Precision

In PyGAD
2.14.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-14-0],
the gene_type parameter allows customizing the gene type for each
individual gene. This is by using a list/tuple/numpy.ndarray
with number of elements equal to the number of genes. For each element,
a type is specified for the corresponding gene.

This is an example for a 5-gene problem where different types are
assigned to the genes.

gene_type=[int, float, numpy.float16, numpy.int8, float]





This is a complete code that prints the initial and final population for
a custom-gene data type.

import pygad
import numpy

equation_inputs = [4, -2, 3.5, 8, -2]
desired_output = 2671.1234

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=5,
                       num_parents_mating=2,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       gene_type=[int, float, numpy.float16, numpy.int8, float])

print("Initial Population")
print(ga_instance.initial_population)

ga_instance.run()

print("Final Population")
print(ga_instance.population)





Initial Population
[[0 0.8615522360026828 0.7021484375 -2 3.5301821368185866]
 [-3 2.648189378595294 -3.830078125 1 -0.9586271572917742]
 [3 3.7729827570110714 1.2529296875 -3 1.395741994211889]
 [0 1.0490687178053282 1.51953125 -2 0.7243617940450235]
 [0 -0.6550158436937226 -2.861328125 -2 1.8212734549263097]]

Final Population
[[3 3.7729827570110714 2.055 0 0.7243617940450235]
 [3 3.7729827570110714 1.458 0 -0.14638754050305036]
 [3 3.7729827570110714 1.458 0 0.0869406120516778]
 [3 3.7729827570110714 1.458 0 0.7243617940450235]
 [3 3.7729827570110714 1.458 0 -0.14638754050305036]]







Data Type for each Individual Gene with Precision

The precision can also be specified for the float data types as in
the next line where the second gene precision is 2 and last gene
precision is 1.

gene_type=[int, [float, 2], numpy.float16, numpy.int8, [float, 1]]





This is a complete example where the initial and final populations are
printed where the genes comply with the data types and precisions
specified.

import pygad
import numpy

equation_inputs = [4, -2, 3.5, 8, -2]
desired_output = 2671.1234

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=5,
                       num_parents_mating=2,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       gene_type=[int, [float, 2], numpy.float16, numpy.int8, [float, 1]])

print("Initial Population")
print(ga_instance.initial_population)

ga_instance.run()

print("Final Population")
print(ga_instance.population)





Initial Population
[[-2 -1.22 1.716796875 -1 0.2]
 [-1 -1.58 -3.091796875 0 -1.3]
 [3 3.35 -0.107421875 1 -3.3]
 [-2 -3.58 -1.779296875 0 0.6]
 [2 -3.73 2.65234375 3 -0.5]]

Final Population
[[2 -4.22 3.47 3 -1.3]
 [2 -3.73 3.47 3 -1.3]
 [2 -4.22 3.47 2 -1.3]
 [2 -4.58 3.47 3 -1.3]
 [2 -3.73 3.47 3 -1.3]]








Parallel Processing in PyGAD

Starting from PyGAD
2.17.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-17-0],
parallel processing becomes supported. This section explains how to use
parallel processing in PyGAD.

According to the PyGAD
lifecycle [https://pygad.readthedocs.io/en/latest/pygad.html#life-cycle-of-pygad],
parallel processing can be parallelized in only 2 operations:


	Population fitness calculation.


	Mutation.




The reason is that the calculations in these 2 operations are
independent (i.e. each solution/chromosome is handled independently from
the others) and can be distributed across different processes or
threads.

For the mutation operation, it does not do intensive calculations on the
CPU. Its calculations are simple like flipping the values of some genes
from 0 to 1 or adding a random value to some genes. So, it does not take
much CPU processing time. Experiments proved that parallelizing the
mutation operation across the solutions increases the time instead of
reducing it. This is because running multiple processes or threads adds
overhead to manage them. Thus, parallel processing cannot be applied on
the mutation operation.

For the population fitness calculation, parallel processing can help
make a difference and reduce the processing time. But this is
conditional on the type of calculations done in the fitness function. If
the fitness function makes intensive calculations and takes much
processing time from the CPU, then it is probably that parallel
processing will help to cut down the overall time.

This section explains how parallel processing works in PyGAD and how to
use parallel processing in PyGAD


How to Use Parallel Processing in PyGAD

Starting from PyGAD
2.17.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-17-0],
a new parameter called parallel_processing added to the constructor
of the pygad.GA class.

import pygad
...
ga_instance = pygad.GA(...,
                       parallel_processing=...)
...





This parameter allows the user to do the following:


	Enable parallel processing.


	Select whether processes or threads are used.


	Specify the number of processes or threads to be used.




These are 3 possible values for the parallel_processing parameter:


	None: (Default) It means no parallel processing is used.


	A positive integer referring to the number of threads to be used
(i.e. threads, not processes, are used.


	list/tuple: If a list or a tuple of exactly 2 elements is
assigned, then:


	The first element can be either 'process' or 'thread' to
specify whether processes or threads are used, respectively.


	The second element can be:


	A positive integer to select the maximum number of processes or
threads to be used


	0 to indicate that 0 processes or threads are used. It
means no parallel processing. This is identical to setting
parallel_processing=None.


	None to use the default value as calculated by the
concurrent.futures module.












These are examples of the values assigned to the parallel_processing
parameter:


	parallel_processing=4: Because the parameter is assigned a
positive integer, this means parallel processing is activated where 4
threads are used.


	parallel_processing=["thread", 5]: Use parallel processing with 5
threads. This is identical to parallel_processing=5.


	parallel_processing=["process", 8]: Use parallel processing with
8 processes.


	parallel_processing=["process", 0]: As the second element is
given the value 0, this means do not use parallel processing. This is
identical to parallel_processing=None.






Examples

The examples will help you know the difference between using processes
and threads. Moreover, it will give an idea when parallel processing
would make a difference and reduce the time. These are dummy examples
where the fitness function is made to always return 0.

The first example uses 10 genes, 5 solutions in the population where
only 3 solutions mate, and 9999 generations. The fitness function uses a
for loop with 100 iterations just to have some calculations. In the
constructor of the pygad.GA class, parallel_processing=None
means no parallel processing is used.

import pygad
import time

def fitness_func(ga_instance, solution, solution_idx):
    for _ in range(99):
        pass
    return 0

ga_instance = pygad.GA(num_generations=9999,
                       num_parents_mating=3,
                       sol_per_pop=5,
                       num_genes=10,
                       fitness_func=fitness_func,
                       suppress_warnings=True,
                       parallel_processing=None)

if __name__ == '__main__':
    t1 = time.time()

    ga_instance.run()

    t2 = time.time()
    print("Time is", t2-t1)





When parallel processing is not used, the time it takes to run the
genetic algorithm is 1.5 seconds.

In the comparison, let’s do a second experiment where parallel
processing is used with 5 threads. In this case, it take 5 seconds.

...
ga_instance = pygad.GA(...,
                       parallel_processing=5)
...





For the third experiment, processes instead of threads are used. Also,
only 99 generations are used instead of 9999. The time it takes is
99 seconds.

...
ga_instance = pygad.GA(num_generations=99,
                       ...,
                       parallel_processing=["process", 5])
...





This is the summary of the 3 experiments:


	No parallel processing & 9999 generations: 1.5 seconds.


	Parallel processing with 5 threads & 9999 generations: 5 seconds


	Parallel processing with 5 processes & 99 generations: 99 seconds




Because the fitness function does not need much CPU time, the normal
processing takes the least time. Running processes for this simple
problem takes 99 compared to only 5 seconds for threads because managing
processes is much heavier than managing threads. Thus, most of the CPU
time is for swapping the processes instead of executing the code.

In the second example, the loop makes 99999999 iterations and only 5
generations are used. With no parallelization, it takes 22 seconds.

import pygad
import time

def fitness_func(ga_instance, solution, solution_idx):
    for _ in range(99999999):
        pass
    return 0

ga_instance = pygad.GA(num_generations=5,
                       num_parents_mating=3,
                       sol_per_pop=5,
                       num_genes=10,
                       fitness_func=fitness_func,
                       suppress_warnings=True,
                       parallel_processing=None)

if __name__ == '__main__':
    t1 = time.time()
    ga_instance.run()
    t2 = time.time()
    print("Time is", t2-t1)





It takes 15 seconds when 10 processes are used.

...
ga_instance = pygad.GA(...,
                       parallel_processing=["process", 10])
...





This is compared to 20 seconds when 10 threads are used.

...
ga_instance = pygad.GA(...,
                       parallel_processing=["thread", 10])
...





Based on the second example, using parallel processing with 10 processes
takes the least time because there is much CPU work done. Generally,
processes are preferred over threads when most of the work in on the
CPU. Threads are preferred over processes in some situations like doing
input/output operations.

Before releasing PyGAD
2.17.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-17-0],
László
Fazekas [https://www.linkedin.com/in/l%C3%A1szl%C3%B3-fazekas-2429a912]
wrote an article to parallelize the fitness function with PyGAD. Check
it: How Genetic Algorithms Can Compete with Gradient Descent and
Backprop [https://hackernoon.com/how-genetic-algorithms-can-compete-with-gradient-descent-and-backprop-9m9t33bq].




Print Lifecycle Summary

In PyGAD
2.19.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-19-0],
a new method called summary() is supported. It prints a Keras-like
summary of the PyGAD lifecycle showing the steps, callback functions,
parameters, etc.

This method accepts the following parameters:


	line_length=70: An integer representing the length of the single
line in characters.


	fill_character=" ": A character to fill the lines.


	line_character="-": A character for creating a line separator.


	line_character2="=": A secondary character to create a line
separator.


	columns_equal_len=False: The table rows are split into
equal-sized columns or split subjective to the width needed.


	print_step_parameters=True: Whether to print extra parameters
about each step inside the step. If print_step_parameters=False
and print_parameters_summary=True, then the parameters of each
step are printed at the end of the table.


	print_parameters_summary=True: Whether to print parameters
summary at the end of the table. If print_step_parameters=False,
then the parameters of each step are printed at the end of the table
too.




This is a quick example to create a PyGAD example.

import pygad
import numpy

function_inputs = [4,-2,3.5,5,-11,-4.7]
desired_output = 44

def genetic_fitness(solution, solution_idx):
    output = numpy.sum(solution*function_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

def on_gen(ga):
    pass

def on_crossover_callback(a, b):
    pass

ga_instance = pygad.GA(num_generations=100,
                       num_parents_mating=10,
                       sol_per_pop=20,
                       num_genes=len(function_inputs),
                       on_crossover=on_crossover_callback,
                       on_generation=on_gen,
                       parallel_processing=2,
                       stop_criteria="reach_10",
                       fitness_batch_size=4,
                       crossover_probability=0.4,
                       fitness_func=genetic_fitness)





Then call the summary() method to print the summary with the default
parameters. Note that entries for the crossover and generation callback
function are created because their callback functions are implemented
through the on_crossover_callback() and on_gen(), respectively.

ga_instance.summary()





----------------------------------------------------------------------
                           PyGAD Lifecycle
======================================================================
Step                   Handler                            Output Shape
======================================================================
Fitness Function       genetic_fitness()                  (1)
Fitness batch size: 4
----------------------------------------------------------------------
Parent Selection       steady_state_selection()           (10, 6)
Number of Parents: 10
----------------------------------------------------------------------
Crossover              single_point_crossover()           (10, 6)
Crossover probability: 0.4
----------------------------------------------------------------------
On Crossover           on_crossover_callback()            None
----------------------------------------------------------------------
Mutation               random_mutation()                  (10, 6)
Mutation Genes: 1
Random Mutation Range: (-1.0, 1.0)
Mutation by Replacement: False
Allow Duplicated Genes: True
----------------------------------------------------------------------
On Generation          on_gen()                           None
Stop Criteria: [['reach', 10.0]]
----------------------------------------------------------------------
======================================================================
Population Size: (20, 6)
Number of Generations: 100
Initial Population Range: (-4, 4)
Keep Elitism: 1
Gene DType: [<class 'float'>, None]
Parallel Processing: ['thread', 2]
Save Best Solutions: False
Save Solutions: False
======================================================================





We can set the print_step_parameters and
print_parameters_summary parameters to False to not print the
parameters.

ga_instance.summary(print_step_parameters=False,
                    print_parameters_summary=False)





----------------------------------------------------------------------
                           PyGAD Lifecycle
======================================================================
Step                   Handler                            Output Shape
======================================================================
Fitness Function       genetic_fitness()                  (1)
----------------------------------------------------------------------
Parent Selection       steady_state_selection()           (10, 6)
----------------------------------------------------------------------
Crossover              single_point_crossover()           (10, 6)
----------------------------------------------------------------------
On Crossover           on_crossover_callback()            None
----------------------------------------------------------------------
Mutation               random_mutation()                  (10, 6)
----------------------------------------------------------------------
On Generation          on_gen()                           None
----------------------------------------------------------------------
======================================================================







Logging Outputs

In PyGAD
3.0.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-3-0-0],
the print() statement is no longer used and the outputs are printed
using the logging [https://docs.python.org/3/library/logging.html]
module. A a new parameter called logger is supported to accept the
user-defined logger.

import logging

logger = ...

ga_instance = pygad.GA(...,
                       logger=logger,
                       ...)





The default value for this parameter is None. If there is no logger
passed (i.e. logger=None), then a default logger is created to log
the messages to the console exactly like how the print() statement
works.

Some advantages of using the the
logging [https://docs.python.org/3/library/logging.html] module
instead of the print() statement are:


	The user has more control over the printed messages specially if
there is a project that uses multiple modules where each module
prints its messages. A logger can organize the outputs.


	Using the proper Handler, the user can log the output messages to
files and not only restricted to printing it to the console. So, it
is much easier to record the outputs.


	The format of the printed messages can be changed by customizing the
Formatter assigned to the Logger.




This section gives some quick examples to use the logging module and
then gives an example to use the logger with PyGAD.


Logging to the Console

This is an example to create a logger to log the messages to the
console.

import logging

# Create a logger
logger = logging.getLogger(__name__)

# Set the logger level to debug so that all the messages are printed.
logger.setLevel(logging.DEBUG)

# Create a stream handler to log the messages to the console.
stream_handler = logging.StreamHandler()

# Set the handler level to debug.
stream_handler.setLevel(logging.DEBUG)

# Create a formatter
formatter = logging.Formatter('%(message)s')

# Add the formatter to handler.
stream_handler.setFormatter(formatter)

# Add the stream handler to the logger
logger.addHandler(stream_handler)





Now, we can log messages to the console with the format specified in the
Formatter.

logger.debug('Debug message.')
logger.info('Info message.')
logger.warning('Warn message.')
logger.error('Error message.')
logger.critical('Critical message.')





The outputs are identical to those returned using the print()
statement.

Debug message.
Info message.
Warn message.
Error message.
Critical message.





By changing the format of the output messages, we can have more
information about each message.

formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')





This is a sample output.

2023-04-03 18:46:27 DEBUG: Debug message.
2023-04-03 18:46:27 INFO: Info message.
2023-04-03 18:46:27 WARNING: Warn message.
2023-04-03 18:46:27 ERROR: Error message.
2023-04-03 18:46:27 CRITICAL: Critical message.





Note that you may need to clear the handlers after finishing the
execution. This is to make sure no cached handlers are used in the next
run. If the cached handlers are not cleared, then the single output
message may be repeated.

logger.handlers.clear()







Logging to a File

This is another example to log the messages to a file named
logfile.txt. The formatter prints the following about each message:


	The date and time at which the message is logged.


	The log level.


	The message.


	The path of the file.


	The lone number of the log message.




import logging

level = logging.DEBUG
name = 'logfile.txt'

logger = logging.getLogger(name)
logger.setLevel(level)

file_handler = logging.FileHandler(name, 'a+', 'utf-8')
file_handler.setLevel(logging.DEBUG)
file_format = logging.Formatter('%(asctime)s %(levelname)s: %(message)s - %(pathname)s:%(lineno)d', datefmt='%Y-%m-%d %H:%M:%S')
file_handler.setFormatter(file_format)
logger.addHandler(file_handler)





This is how the outputs look like.

2023-04-03 18:54:03 DEBUG: Debug message. - c:\users\agad069\desktop\logger\example2.py:46
2023-04-03 18:54:03 INFO: Info message. - c:\users\agad069\desktop\logger\example2.py:47
2023-04-03 18:54:03 WARNING: Warn message. - c:\users\agad069\desktop\logger\example2.py:48
2023-04-03 18:54:03 ERROR: Error message. - c:\users\agad069\desktop\logger\example2.py:49
2023-04-03 18:54:03 CRITICAL: Critical message. - c:\users\agad069\desktop\logger\example2.py:50





Consider clearing the handlers if necessary.

logger.handlers.clear()







Log to Both the Console and a File

This is an example to create a single Logger associated with 2 handlers:


	A file handler.


	A stream handler.




import logging

level = logging.DEBUG
name = 'logfile.txt'

logger = logging.getLogger(name)
logger.setLevel(level)

file_handler = logging.FileHandler(name,'a+','utf-8')
file_handler.setLevel(logging.DEBUG)
file_format = logging.Formatter('%(asctime)s %(levelname)s: %(message)s - %(pathname)s:%(lineno)d', datefmt='%Y-%m-%d %H:%M:%S')
file_handler.setFormatter(file_format)
logger.addHandler(file_handler)

console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_format = logging.Formatter('%(message)s')
console_handler.setFormatter(console_format)
logger.addHandler(console_handler)





When a log message is executed, then it is both printed to the console
and saved in the logfile.txt.

Consider clearing the handlers if necessary.

logger.handlers.clear()







PyGAD Example

To use the logger in PyGAD, just create your custom logger and pass it
to the logger parameter.

import logging
import pygad
import numpy

level = logging.DEBUG
name = 'logfile.txt'

logger = logging.getLogger(name)
logger.setLevel(level)

file_handler = logging.FileHandler(name,'a+','utf-8')
file_handler.setLevel(logging.DEBUG)
file_format = logging.Formatter('%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
file_handler.setFormatter(file_format)
logger.addHandler(file_handler)

console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_format = logging.Formatter('%(message)s')
console_handler.setFormatter(console_format)
logger.addHandler(console_handler)

equation_inputs = [4, -2, 8]
desired_output = 2671.1234

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

def on_generation(ga_instance):
    ga_instance.logger.info(f"Generation = {ga_instance.generations_completed}")
    ga_instance.logger.info(f"Fitness    = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]}")

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=40,
                       num_parents_mating=2,
                       keep_parents=2,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       on_generation=on_generation,
                       logger=logger)
ga_instance.run()

logger.handlers.clear()





By executing this code, the logged messages are printed to the console
and also saved in the text file.

2023-04-03 19:04:27 INFO: Generation = 1
2023-04-03 19:04:27 INFO: Fitness    = 0.00038086960368076276
2023-04-03 19:04:27 INFO: Generation = 2
2023-04-03 19:04:27 INFO: Fitness    = 0.00038214871408010853
2023-04-03 19:04:27 INFO: Generation = 3
2023-04-03 19:04:27 INFO: Fitness    = 0.0003832795907974678
2023-04-03 19:04:27 INFO: Generation = 4
2023-04-03 19:04:27 INFO: Fitness    = 0.00038398612055017196
2023-04-03 19:04:27 INFO: Generation = 5
2023-04-03 19:04:27 INFO: Fitness    = 0.00038442348890867516
2023-04-03 19:04:27 INFO: Generation = 6
2023-04-03 19:04:27 INFO: Fitness    = 0.0003854406039137763
2023-04-03 19:04:27 INFO: Generation = 7
2023-04-03 19:04:27 INFO: Fitness    = 0.00038646083174063284
2023-04-03 19:04:27 INFO: Generation = 8
2023-04-03 19:04:27 INFO: Fitness    = 0.0003875169193024936
2023-04-03 19:04:27 INFO: Generation = 9
2023-04-03 19:04:27 INFO: Fitness    = 0.0003888816727311021
2023-04-03 19:04:27 INFO: Generation = 10
2023-04-03 19:04:27 INFO: Fitness    = 0.000389832593101348








Solve Non-Deterministic Problems

PyGAD can be used to solve both deterministic and non-deterministic
problems. Deterministic are those that return the same fitness for the
same solution. For non-deterministic problems, a different fitness value
would be returned for the same solution.

By default, PyGAD settings are set to solve deterministic problems.
PyGAD can save the explored solutions and their fitness to reuse in the
future. These instances attributes can save the solutions:


	solutions: Exists if save_solutions=True.


	best_solutions: Exists if save_best_solutions=True.


	last_generation_elitism: Exists if keep_elitism > 0.


	last_generation_parents: Exists if keep_parents > 0 or
keep_parents=-1.




To configure PyGAD for non-deterministic problems, we have to disable
saving the previous solutions. This is by setting these parameters:


	keep_elisitm=0


	keep_parents=0


	keep_solutions=False


	keep_best_solutions=False




import pygad
...
ga_instance = pygad.GA(...,
                       keep_elitism=0,
                       keep_parents=0,
                       save_solutions=False,
                       save_best_solutions=False,
                       ...)





This way PyGAD will not save any explored solution and thus the fitness
function have to be called for each individual solution.



Reuse the Fitness instead of Calling the Fitness Function

It may happen that a previously explored solution in generation X is
explored again in another generation Y (where Y > X). For some problems,
calling the fitness function takes much time.

For deterministic problems, it is better to not call the fitness
function for an already explored solutions. Instead, reuse the fitness
of the old solution. PyGAD supports some options to help you save time
calling the fitness function for a previously explored solution.

The parameters explored in this section can be set in the constructor of
the pygad.GA class.

The cal_pop_fitness() method of the pygad.GA class checks these
parameters to see if there is a possibility of reusing the fitness
instead of calling the fitness function.


1. save_solutions

It defaults to False. If set to True, then the population of
each generation is saved into the solutions attribute of the
pygad.GA instance. In other words, every single solution is saved in
the solutions attribute.



2. save_best_solutions

It defaults to False. If True, then it only saves the best
solution in every generation.



3. keep_elitism

It accepts an integer and defaults to 1. If set to a positive integer,
then it keeps the elitism of one generation available in the next
generation.



4. keep_parents

It accepts an integer and defaults to -1. It set to -1 or a positive
integer, then it keeps the parents of one generation available in the
next generation.




Why the Fitness Function is not Called for Solution at Index 0?

PyGAD has a parameter called keep_elitism which defaults to 1. This
parameter defines the number of best solutions in generation X to
keep in the next generation X+1. The best solutions are just copied
from generation X to generation X+1 without making any change.

ga_instance = pygad.GA(...,
                       keep_elitism=1,
                       ...)





The best solutions are copied at the beginning of the population. If
keep_elitism=1, this means the best solution in generation X is kept
in the next generation X+1 at index 0 of the population. If
keep_elitism=2, this means the 2 best solutions in generation X are
kept in the next generation X+1 at indices 0 and 1 of the population of
generation 1.

Because the fitness of these best solutions are already calculated in
generation X, then their fitness values will not be recalculated at
generation X+1 (i.e. the fitness function will not be called for these
solutions again). Instead, their fitness values are just reused. This is
why you see that no solution with index 0 is passed to the fitness
function.

To force calling the fitness function for each solution in every
generation, consider setting keep_elitism and keep_parents to 0.
Moreover, keep the 2 parameters save_solutions and
save_best_solutions to their default value False.

ga_instance = pygad.GA(...,
                       keep_elitism=0,
                       keep_parents=0,
                       save_solutions=False,
                       save_best_solutions=False,
                       ...)







Batch Fitness Calculation

In PyGAD
2.19.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-19-0],
a new optional parameter called fitness_batch_size is supported. A
new optional parameter called fitness_batch_size is supported to
calculate the fitness function in batches. Thanks to Linan
Qiu [https://github.com/linanqiu] for opening the GitHub issue
#136 [https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/136].

Its values can be:


	1 or None: If the fitness_batch_size parameter is
assigned the value 1 or None (default), then the normal flow
is used where the fitness function is called for each individual
solution. That is if there are 15 solutions, then the fitness
function is called 15 times.


	1 < fitness_batch_size <= sol_per_pop: If the
fitness_batch_size parameter is assigned a value satisfying this
condition 1 < fitness_batch_size <= sol_per_pop, then the
solutions are grouped into batches of size fitness_batch_size and
the fitness function is called once for each batch. In this case, the
fitness function must return a list/tuple/numpy.ndarray with a length
equal to the number of solutions passed.





Example without fitness_batch_size Parameter

This is an example where the fitness_batch_size parameter is given
the value None (which is the default value). This is equivalent to
using the value 1. In this case, the fitness function will be called
for each solution. This means the fitness function fitness_func will
receive only a single solution. This is an example of the passed
arguments to the fitness function:

solution: [ 2.52860734, -0.94178795, 2.97545704, 0.84131987, -3.78447118, 2.41008358]
solution_idx: 3





The fitness function also must return a single numeric value as the
fitness for the passed solution.

As we have a population of 20 solutions, then the fitness function
is called 20 times per generation. For 5 generations, then the fitness
function is called 20*5 = 100 times. In PyGAD, the fitness function
is called after the last generation too and this adds additional 20
times. So, the total number of calls to the fitness function is
20*5 + 20 = 120.

Note that the keep_elitism and keep_parents parameters are set
to 0 to make sure no fitness values are reused and to force calling
the fitness function for each individual solution.

import pygad
import numpy

function_inputs = [4,-2,3.5,5,-11,-4.7]
desired_output = 44

number_of_calls = 0

def fitness_func(ga_instance, solution, solution_idx):
    global number_of_calls
    number_of_calls = number_of_calls + 1
    output = numpy.sum(solution*function_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

ga_instance = pygad.GA(num_generations=5,
                       num_parents_mating=10,
                       sol_per_pop=20,
                       fitness_func=fitness_func,
                       fitness_batch_size=None,
                       # fitness_batch_size=1,
                       num_genes=len(function_inputs),
                       keep_elitism=0,
                       keep_parents=0)

ga_instance.run()
print(number_of_calls)





120







Example with fitness_batch_size Parameter

This is an example where the fitness_batch_size parameter is used
and assigned the value 4. This means the solutions will be grouped
into batches of 4 solutions. The fitness function will be called
once for each patch (i.e. called once for each 4 solutions).

This is an example of the arguments passed to it:

solutions:
    [[ 3.1129432  -0.69123589  1.93792414  2.23772968 -1.54616001 -0.53930799]
     [ 3.38508121  0.19890812  1.93792414  2.23095014 -3.08955597  3.10194128]
     [ 2.37079504 -0.88819803  2.97545704  1.41742256 -3.95594055  2.45028256]
     [ 2.52860734 -0.94178795  2.97545704  0.84131987 -3.78447118  2.41008358]]
solutions_indices:
    [16, 17, 18, 19]





As we have 20 solutions, then there are 20/4 = 5 patches. As a
result, the fitness function is called only 5 times per generation
instead of 20. For each call to the fitness function, it receives a
batch of 4 solutions.

As we have 5 generations, then the function will be called 5*5 = 25
times. Given the call to the fitness function after the last generation,
then the total number of calls is 5*5 + 5 = 30.

import pygad
import numpy

function_inputs = [4,-2,3.5,5,-11,-4.7]
desired_output = 44

number_of_calls = 0

def fitness_func_batch(ga_instance, solutions, solutions_indices):
    global number_of_calls
    number_of_calls = number_of_calls + 1
    batch_fitness = []
    for solution in solutions:
        output = numpy.sum(solution*function_inputs)
        fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
        batch_fitness.append(fitness)
    return batch_fitness

ga_instance = pygad.GA(num_generations=5,
                       num_parents_mating=10,
                       sol_per_pop=20,
                       fitness_func=fitness_func_batch,
                       fitness_batch_size=4,
                       num_genes=len(function_inputs),
                       keep_elitism=0,
                       keep_parents=0)

ga_instance.run()
print(number_of_calls)





30





When batch fitness calculation is used, then we saved 120 - 30 = 90
calls to the fitness function.




Use Functions and Methods to Build Fitness and Callbacks

In PyGAD 2.19.0, it is possible to pass user-defined functions or
methods to the following parameters:


	fitness_func


	on_start


	on_fitness


	on_parents


	on_crossover


	on_mutation


	on_generation


	on_stop




This section gives 2 examples to assign these parameters user-defined:


	Functions.


	Methods.





Assign Functions

This is a dummy example where the fitness function returns a random
value. Note that the instance of the pygad.GA class is passed as the
last parameter of all functions.

import pygad
import numpy

def fitness_func(ga_instanse, solution, solution_idx):
    return numpy.random.rand()

def on_start(ga_instanse):
    print("on_start")

def on_fitness(ga_instanse, last_gen_fitness):
    print("on_fitness")

def on_parents(ga_instanse, last_gen_parents):
    print("on_parents")

def on_crossover(ga_instanse, last_gen_offspring):
    print("on_crossover")

def on_mutation(ga_instanse, last_gen_offspring):
    print("on_mutation")

def on_generation(ga_instanse):
    print("on_generation\n")

def on_stop(ga_instanse, last_gen_fitness):
    print("on_stop")

ga_instance = pygad.GA(num_generations=5,
                       num_parents_mating=4,
                       sol_per_pop=10,
                       num_genes=2,
                       on_start=on_start,
                       on_fitness=on_fitness,
                       on_parents=on_parents,
                       on_crossover=on_crossover,
                       on_mutation=on_mutation,
                       on_generation=on_generation,
                       on_stop=on_stop,
                       fitness_func=fitness_func)

ga_instance.run()







Assign Methods

The next example has all the method defined inside the class Test.
All of the methods accept an additional parameter representing the
method’s object of the class Test.

All methods accept self as the first parameter and the instance of
the pygad.GA class as the last parameter.

import pygad
import numpy

class Test:
    def fitness_func(self, ga_instanse, solution, solution_idx):
        return numpy.random.rand()

    def on_start(self, ga_instanse):
        print("on_start")

    def on_fitness(self, ga_instanse, last_gen_fitness):
        print("on_fitness")

    def on_parents(self, ga_instanse, last_gen_parents):
        print("on_parents")

    def on_crossover(self, ga_instanse, last_gen_offspring):
        print("on_crossover")

    def on_mutation(self, ga_instanse, last_gen_offspring):
        print("on_mutation")

    def on_generation(self, ga_instanse):
        print("on_generation\n")

    def on_stop(self, ga_instanse, last_gen_fitness):
        print("on_stop")

ga_instance = pygad.GA(num_generations=5,
                       num_parents_mating=4,
                       sol_per_pop=10,
                       num_genes=2,
                       on_start=Test().on_start,
                       on_fitness=Test().on_fitness,
                       on_parents=Test().on_parents,
                       on_crossover=Test().on_crossover,
                       on_mutation=Test().on_mutation,
                       on_generation=Test().on_generation,
                       on_stop=Test().on_stop,
                       fitness_func=Test().fitness_func)

ga_instance.run()









            

          

      

      

    

  

    
      
          
            
  
pygad.torchga Module

This section of the PyGAD’s library documentation discusses the
pygad.utils module.

PyGAD supports different types of operators for selecting the parents,
applying the crossover, and mutation. More features will be added in the
future. To ask for a new feature, please check the Ask for
Feature [https://pygad.readthedocs.io/en/latest/releases.html#ask-for-feature]
section.

The submodules in the pygad.utils module are:


	crossover: Has the Crossover class that implements the
crossover operators.


	mutation: Has the Mutation class that implements the mutation
operators.


	parent_selection: Has the ParentSelection class that
implements the parent selection operators.


	nsga2: Has the NSGA2 class that implements the Non-Dominated
Sorting Genetic Algorithm II (NSGA-II).




Note that the pygad.GA class extends all of these classes. So, the
user can access any of the methods in such classes directly by the
instance/object of the pygad.GA class.

The next sections discuss each submodule.



pygad.utils.crossover Submodule

The pygad.utils.crossover module has a class named Crossover
with the supported crossover operations which are:


	Single point: Implemented using the single_point_crossover()
method.


	Two points: Implemented using the two_points_crossover() method.


	Uniform: Implemented using the uniform_crossover() method.


	Scattered: Implemented using the scattered_crossover() method.




All crossover methods accept this parameter:


	parents: The parents to mate for producing the offspring.


	offspring_size: The size of the offspring to produce.






pygad.utils.mutation Submodule

The pygad.utils.mutation module has a class named Mutation with
the supported mutation operations which are:


	Random: Implemented using the random_mutation() method.


	Swap: Implemented using the swap_mutation() method.


	Inversion: Implemented using the inversion_mutation() method.


	Scramble: Implemented using the scramble_mutation() method.


	Scramble: Implemented using the adaptive_mutation() method.




All mutation methods accept this parameter:


	offspring: The offspring to mutate.






Adaptive Mutation

In the regular genetic algorithm, the mutation works by selecting a
single fixed mutation rate for all solutions regardless of their fitness
values. So, regardless on whether this solution has high or low quality,
the same number of genes are mutated all the time.

The pitfalls of using a constant mutation rate for all solutions are
summarized in this paper Libelli, S. Marsili, and P. Alba. “Adaptive
mutation in genetic algorithms.” Soft computing 4.2 (2000):
76-80 [https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf/10.1007/s005000000042.pdf&casa_token=IT4NfJUvslcAAAAA:VegHW6tm2fe3e0R9cRKjuGKkKWXJTQSfNMT6z0kGbMsAllyK1NrEY3cEWg8bj7AJWEQPaqWIJxmHNBHg]
as follows:


The weak point of “classical” GAs is the total randomness of
mutation, which is applied equally to all chromosomes, irrespective
of their fitness. Thus a very good chromosome is equally likely to be
disrupted by mutation as a bad one.

On the other hand, bad chromosomes are less likely to produce good
ones through crossover, because of their lack of building blocks,
until they remain unchanged. They would benefit the most from
mutation and could be used to spread throughout the parameter space
to increase the search thoroughness. So there are two conflicting
needs in determining the best probability of mutation.

Usually, a reasonable compromise in the case of a constant mutation
is to keep the probability low to avoid disruption of good
chromosomes, but this would prevent a high mutation rate of
low-fitness chromosomes. Thus a constant probability of mutation
would probably miss both goals and result in a slow improvement of
the population.




According to Libelli, S. Marsili, and P.
Alba. [https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf/10.1007/s005000000042.pdf&casa_token=IT4NfJUvslcAAAAA:VegHW6tm2fe3e0R9cRKjuGKkKWXJTQSfNMT6z0kGbMsAllyK1NrEY3cEWg8bj7AJWEQPaqWIJxmHNBHg]
work, the adaptive mutation solves the problems of constant mutation.

Adaptive mutation works as follows:


	Calculate the average fitness value of the population (f_avg).


	For each chromosome, calculate its fitness value (f).


	If f<f_avg, then this solution is regarded as a low-quality
solution and thus the mutation rate should be kept high because this
would increase the quality of this solution.


	If f>f_avg, then this solution is regarded as a high-quality
solution and thus the mutation rate should be kept low to avoid
disrupting this high quality solution.




In PyGAD, if f=f_avg, then the solution is regarded of high quality.

The next figure summarizes the previous steps.

[image: ]
This strategy is applied in PyGAD.


Use Adaptive Mutation in PyGAD

In PyGAD
2.10.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-10-0],
adaptive mutation is supported. To use it, just follow the following 2
simple steps:


	In the constructor of the pygad.GA class, set
mutation_type="adaptive" to specify that the type of mutation is
adaptive.


	Specify the mutation rates for the low and high quality solutions
using one of these 3 parameters according to your preference:
mutation_probability, mutation_num_genes, and
mutation_percent_genes. Please check the documentation of each
of these
parameters [https://pygad.readthedocs.io/en/latest/pygad.html#init]
for more information.




When adaptive mutation is used, then the value assigned to any of the 3
parameters can be of any of these data types:


	list


	tuple


	numpy.ndarray




Whatever the data type used, the length of the list, tuple, or
the numpy.ndarray must be exactly 2. That is there are just 2
values:


	The first value is the mutation rate for the low-quality solutions.


	The second value is the mutation rate for the high-quality solutions.




PyGAD expects that the first value is higher than the second value and
thus a warning is printed in case the first value is lower than the
second one.

Here are some examples to feed the mutation rates:

# mutation_probability
mutation_probability = [0.25, 0.1]
mutation_probability = (0.35, 0.17)
mutation_probability = numpy.array([0.15, 0.05])

# mutation_num_genes
mutation_num_genes = [4, 2]
mutation_num_genes = (3, 1)
mutation_num_genes = numpy.array([7, 2])

# mutation_percent_genes
mutation_percent_genes = [25, 12]
mutation_percent_genes = (15, 8)
mutation_percent_genes = numpy.array([21, 13])





Assume that the average fitness is 12 and the fitness values of 2
solutions are 15 and 7. If the mutation probabilities are specified as
follows:

mutation_probability = [0.25, 0.1]





Then the mutation probability of the first solution is 0.1 because its
fitness is 15 which is higher than the average fitness 12. The mutation
probability of the second solution is 0.25 because its fitness is 7
which is lower than the average fitness 12.

Here is an example that uses adaptive mutation.

import pygad
import numpy

function_inputs = [4,-2,3.5,5,-11,-4.7] # Function inputs.
desired_output = 44 # Function output.

def fitness_func(ga_instance, solution, solution_idx):
    # The fitness function calulates the sum of products between each input and its corresponding weight.
    output = numpy.sum(solution*function_inputs)
    # The value 0.000001 is used to avoid the Inf value when the denominator numpy.abs(output - desired_output) is 0.0.
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

# Creating an instance of the GA class inside the ga module. Some parameters are initialized within the constructor.
ga_instance = pygad.GA(num_generations=200,
                       fitness_func=fitness_func,
                       num_parents_mating=10,
                       sol_per_pop=20,
                       num_genes=len(function_inputs),
                       mutation_type="adaptive",
                       mutation_num_genes=(3, 1))

# Running the GA to optimize the parameters of the function.
ga_instance.run()

ga_instance.plot_fitness(title="PyGAD with Adaptive Mutation", linewidth=5)








pygad.utils.parent_selection Submodule

The pygad.utils.parent_selection module has a class named
ParentSelection with the supported parent selection operations which
are:


	Steady-state: Implemented using the steady_state_selection()
method.


	Roulette wheel: Implemented using the roulette_wheel_selection()
method.


	Stochastic universal: Implemented using the
stochastic_universal_selection()method.


	Rank: Implemented using the rank_selection() method.


	Random: Implemented using the random_selection() method.


	Tournament: Implemented using the tournament_selection() method.


	NSGA-II: Implemented using the nsga2_selection() method.


	NSGA-II Tournament: Implemented using the
tournament_nsga2_selection() method.




All parent selection methods accept these parameters:


	fitness: The fitness of the entire population.


	num_parents: The number of parents to select.






pygad.utils.nsga2 Submodule

The pygad.utils.nsga2 module has a class named NSGA2 that
implements NSGA-II. The methods inside this class are:


	non_dominated_sorting(): Returns all the pareto fronts by
applying non-dominated sorting over the solutions.


	get_non_dominated_set(): Returns the set of non-dominated
solutions from the passed solutions.


	crowding_distance(): Calculates the crowding distance for all
solutions in the current pareto front.


	sort_solutions_nsga2(): Sort the solutions. If the problem is
single-objective, then the solutions are sorted by sorting the
fitness values of the population. If it is multi-objective, then
non-dominated sorting and crowding distance are applied to sort the
solutions.






User-Defined Crossover, Mutation, and Parent Selection Operators

Previously, the user can select the the type of the crossover, mutation,
and parent selection operators by assigning the name of the operator to
the following parameters of the pygad.GA class’s constructor:


	crossover_type


	mutation_type


	parent_selection_type




This way, the user can only use the built-in functions for each of these
operators.

Starting from PyGAD
2.16.0 [https://pygad.readthedocs.io/en/latest/releases.html#pygad-2-16-0],
the user can create a custom crossover, mutation, and parent selection
operators and assign these functions to the above parameters. Thus, a
new operator can be plugged easily into the PyGAD
Lifecycle [https://pygad.readthedocs.io/en/latest/pygad.html#life-cycle-of-pygad].

This is a sample code that does not use any custom function.

import pygad
import numpy

equation_inputs = [4,-2,3.5]
desired_output = 44

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=5,
                       num_parents_mating=2,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func)

ga_instance.run()
ga_instance.plot_fitness()





This section describes the expected input parameters and outputs. For
simplicity, all of these custom functions all accept the instance of the
pygad.GA class as the last parameter.


User-Defined Crossover Operator

The user-defined crossover function is a Python function that accepts 3
parameters:


	The selected parents.


	The size of the offspring as a tuple of 2 numbers: (the offspring
size, number of genes).


	The instance from the pygad.GA class. This instance helps to
retrieve any property like population, gene_type,
gene_space, etc.




This function should return a NumPy array of shape equal to the value
passed to the second parameter.

The next code creates a template for the user-defined crossover
operator. You can use any names for the parameters. Note how a NumPy
array is returned.

def crossover_func(parents, offspring_size, ga_instance):
    offspring = ...
    ...
    return numpy.array(offspring)





As an example, the next code creates a single-point crossover function.
By randomly generating a random point (i.e. index of a gene), the
function simply uses 2 parents to produce an offspring by copying the
genes before the point from the first parent and the remaining from the
second parent.

def crossover_func(parents, offspring_size, ga_instance):
    offspring = []
    idx = 0
    while len(offspring) != offspring_size[0]:
        parent1 = parents[idx % parents.shape[0], :].copy()
        parent2 = parents[(idx + 1) % parents.shape[0], :].copy()

        random_split_point = numpy.random.choice(range(offspring_size[1]))

        parent1[random_split_point:] = parent2[random_split_point:]

        offspring.append(parent1)

        idx += 1

    return numpy.array(offspring)





To use this user-defined function, simply assign its name to the
crossover_type parameter in the constructor of the pygad.GA
class. The next code gives an example. In this case, the custom function
will be called in each generation rather than calling the built-in
crossover functions defined in PyGAD.

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=5,
                       num_parents_mating=2,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       crossover_type=crossover_func)







User-Defined Mutation Operator

A user-defined mutation function/operator can be created the same way a
custom crossover operator/function is created. Simply, it is a Python
function that accepts 2 parameters:


	The offspring to be mutated.


	The instance from the pygad.GA class. This instance helps to
retrieve any property like population, gene_type,
gene_space, etc.




The template for the user-defined mutation function is given in the next
code. According to the user preference, the function should make some
random changes to the genes.

def mutation_func(offspring, ga_instance):
    ...
    return offspring





The next code builds the random mutation where a single gene from each
chromosome is mutated by adding a random number between 0 and 1 to the
gene’s value.

def mutation_func(offspring, ga_instance):

    for chromosome_idx in range(offspring.shape[0]):
        random_gene_idx = numpy.random.choice(range(offspring.shape[1]))

        offspring[chromosome_idx, random_gene_idx] += numpy.random.random()

    return offspring





Here is how this function is assigned to the mutation_type
parameter.

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=5,
                       num_parents_mating=2,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       crossover_type=crossover_func,
                       mutation_type=mutation_func)





Note that there are other things to take into consideration like:


	Making sure that each gene conforms to the data type(s) listed in the
gene_type parameter.


	If the gene_space parameter is used, then the new value for the
gene should conform to the values/ranges listed.


	Mutating a number of genes that conforms to the parameters
mutation_percent_genes, mutation_probability, and
mutation_num_genes.


	Whether mutation happens with or without replacement based on the
mutation_by_replacement parameter.


	The minimum and maximum values from which a random value is generated
based on the random_mutation_min_val and
random_mutation_max_val parameters.


	Whether duplicates are allowed or not in the chromosome based on the
allow_duplicate_genes parameter.




and more.

It all depends on your objective from building the mutation function.
You may neglect or consider some of the considerations according to your
objective.



User-Defined Parent Selection Operator

No much to mention about building a user-defined parent selection
function as things are similar to building a crossover or mutation
function. Just create a Python function that accepts 3 parameters:


	The fitness values of the current population.


	The number of parents needed.


	The instance from the pygad.GA class. This instance helps to
retrieve any property like population, gene_type,
gene_space, etc.




The function should return 2 outputs:


	The selected parents as a NumPy array. Its shape is equal to (the
number of selected parents, num_genes). Note that the number of
selected parents is equal to the value assigned to the second input
parameter.


	The indices of the selected parents inside the population. It is a 1D
list with length equal to the number of selected parents.




The outputs must be of type numpy.ndarray.

Here is a template for building a custom parent selection function.

def parent_selection_func(fitness, num_parents, ga_instance):
    ...
    return parents, fitness_sorted[:num_parents]





The next code builds the steady-state parent selection where the best
parents are selected. The number of parents is equal to the value in the
num_parents parameter.

def parent_selection_func(fitness, num_parents, ga_instance):

    fitness_sorted = sorted(range(len(fitness)), key=lambda k: fitness[k])
    fitness_sorted.reverse()

    parents = numpy.empty((num_parents, ga_instance.population.shape[1]))

    for parent_num in range(num_parents):
        parents[parent_num, :] = ga_instance.population[fitness_sorted[parent_num], :].copy()

    return parents, numpy.array(fitness_sorted[:num_parents])





Finally, the defined function is assigned to the
parent_selection_type parameter as in the next code.

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=5,
                       num_parents_mating=2,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       crossover_type=crossover_func,
                       mutation_type=mutation_func,
                       parent_selection_type=parent_selection_func)







Example

By discussing how to customize the 3 operators, the next code uses the
previous 3 user-defined functions instead of the built-in functions.

import pygad
import numpy

equation_inputs = [4,-2,3.5]
desired_output = 44

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)

    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)

    return fitness

def parent_selection_func(fitness, num_parents, ga_instance):

    fitness_sorted = sorted(range(len(fitness)), key=lambda k: fitness[k])
    fitness_sorted.reverse()

    parents = numpy.empty((num_parents, ga_instance.population.shape[1]))

    for parent_num in range(num_parents):
        parents[parent_num, :] = ga_instance.population[fitness_sorted[parent_num], :].copy()

    return parents, numpy.array(fitness_sorted[:num_parents])

def crossover_func(parents, offspring_size, ga_instance):

    offspring = []
    idx = 0
    while len(offspring) != offspring_size[0]:
        parent1 = parents[idx % parents.shape[0], :].copy()
        parent2 = parents[(idx + 1) % parents.shape[0], :].copy()

        random_split_point = numpy.random.choice(range(offspring_size[1]))

        parent1[random_split_point:] = parent2[random_split_point:]

        offspring.append(parent1)

        idx += 1

    return numpy.array(offspring)

def mutation_func(offspring, ga_instance):

    for chromosome_idx in range(offspring.shape[0]):
        random_gene_idx = numpy.random.choice(range(offspring.shape[0]))

        offspring[chromosome_idx, random_gene_idx] += numpy.random.random()

    return offspring

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=5,
                       num_parents_mating=2,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       crossover_type=crossover_func,
                       mutation_type=mutation_func,
                       parent_selection_type=parent_selection_func)

ga_instance.run()
ga_instance.plot_fitness()





This is the same example but using methods instead of functions.

import pygad
import numpy

equation_inputs = [4,-2,3.5]
desired_output = 44

class Test:
    def fitness_func(self, ga_instance, solution, solution_idx):
        output = numpy.sum(solution * equation_inputs)

        fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)

        return fitness

    def parent_selection_func(self, fitness, num_parents, ga_instance):

        fitness_sorted = sorted(range(len(fitness)), key=lambda k: fitness[k])
        fitness_sorted.reverse()

        parents = numpy.empty((num_parents, ga_instance.population.shape[1]))

        for parent_num in range(num_parents):
            parents[parent_num, :] = ga_instance.population[fitness_sorted[parent_num], :].copy()

        return parents, numpy.array(fitness_sorted[:num_parents])

    def crossover_func(self, parents, offspring_size, ga_instance):

        offspring = []
        idx = 0
        while len(offspring) != offspring_size[0]:
            parent1 = parents[idx % parents.shape[0], :].copy()
            parent2 = parents[(idx + 1) % parents.shape[0], :].copy()

            random_split_point = numpy.random.choice(range(offspring_size[0]))

            parent1[random_split_point:] = parent2[random_split_point:]

            offspring.append(parent1)

            idx += 1

        return numpy.array(offspring)

    def mutation_func(self, offspring, ga_instance):

        for chromosome_idx in range(offspring.shape[0]):
            random_gene_idx = numpy.random.choice(range(offspring.shape[1]))

            offspring[chromosome_idx, random_gene_idx] += numpy.random.random()

        return offspring

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=5,
                       num_parents_mating=2,
                       num_genes=len(equation_inputs),
                       fitness_func=Test().fitness_func,
                       parent_selection_type=Test().parent_selection_func,
                       crossover_type=Test().crossover_func,
                       mutation_type=Test().mutation_func)

ga_instance.run()
ga_instance.plot_fitness()









            

          

      

      

    

  

    
      
          
            
  
pygad.visualize Module

This section of the PyGAD’s library documentation discusses the
pygad.visualize module. It offers the methods for results
visualization in PyGAD.

This section discusses the different options to visualize the results in
PyGAD through these methods:


	plot_fitness(): Create plots for the fitness.


	plot_genes(): Create plots for the genes.


	plot_new_solution_rate(): Create plots for the new solution rate.




In the following code, the save_solutions flag is set to True
which means all solutions are saved in the solutions attribute. The
code runs for only 10 generations.

import pygad
import numpy

equation_inputs = [4, -2, 3.5, 8, -2, 3.5, 8]
desired_output = 2671.1234

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

ga_instance = pygad.GA(num_generations=10,
                       sol_per_pop=10,
                       num_parents_mating=5,
                       num_genes=len(equation_inputs),
                       fitness_func=fitness_func,
                       gene_space=[range(1, 10), range(10, 20), range(15, 30), range(20, 40), range(25, 50), range(10, 30), range(20, 50)],
                       gene_type=int,
                       save_solutions=True)

ga_instance.run()





Let’s explore how to visualize the results by the above mentioned
methods.



Fitness


plot_fitness()

The plot_fitness() method shows the fitness value for each
generation. It creates, shows, and returns a figure that summarizes how
the fitness value(s) evolve(s) by generation.

It works only after completing at least 1 generation. If no generation
is completed (at least 1), an exception is raised.

This method accepts the following parameters:


	title: Title of the figure.


	xlabel: X-axis label.


	ylabel: Y-axis label.


	linewidth: Line width of the plot. Defaults to 3.


	font_size: Font size for the labels and title. Defaults to
14.


	plot_type: Type of the plot which can be either "plot"
(default), "scatter", or "bar".


	color: Color of the plot which defaults to the greenish color
"#64f20c".


	label: The label used for the legend in the figures of
multi-objective problems. It is not used for single-objective
problems. It defaults to None which means no labels used.


	save_dir: Directory to save the figure.





plot_type="plot"

The simplest way to call this method is as follows leaving the
plot_type with its default value "plot" to create a continuous
line connecting the fitness values across all generations:

ga_instance.plot_fitness()
# ga_instance.plot_fitness(plot_type="plot")





[image: ]


plot_type="scatter"

The plot_type can also be set to "scatter" to create a scatter
graph with each individual fitness represented as a dot. The size of
these dots can be changed using the linewidth parameter.

ga_instance.plot_fitness(plot_type="scatter")





[image: ]


plot_type="bar"

The third value for the plot_type parameter is "bar" to create a
bar graph with each individual fitness represented as a bar.

ga_instance.plot_fitness(plot_type="bar")
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New Solution Rate


plot_new_solution_rate()

The plot_new_solution_rate() method presents the number of new
solutions explored in each generation. This helps to figure out if the
genetic algorithm is able to find new solutions as an indication of more
possible evolution. If no new solutions are explored, this is an
indication that no further evolution is possible.

It works only after completing at least 1 generation. If no generation
is completed (at least 1), an exception is raised.

The plot_new_solution_rate() method accepts the same parameters as
in the plot_fitness() method (it also have 3 possible values for
plot_type parameter). Here are all the parameters it accepts:


	title: Title of the figure.


	xlabel: X-axis label.


	ylabel: Y-axis label.


	linewidth: Line width of the plot. Defaults to 3.


	font_size: Font size for the labels and title. Defaults to
14.


	plot_type: Type of the plot which can be either "plot"
(default), "scatter", or "bar".


	color: Color of the plot which defaults to "#3870FF".


	save_dir: Directory to save the figure.





plot_type="plot"

The default value for the plot_type parameter is "plot".

ga_instance.plot_new_solution_rate()
# ga_instance.plot_new_solution_rate(plot_type="plot")





The next figure shows that, for example, generation 6 has the least
number of new solutions which is 4. The number of new solutions in the
first generation is always equal to the number of solutions in the
population (i.e. the value assigned to the sol_per_pop parameter in
the constructor of the pygad.GA class) which is 10 in this example.
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plot_type="scatter"

The previous graph can be represented as scattered points by setting
plot_type="scatter".

ga_instance.plot_new_solution_rate(plot_type="scatter")
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plot_type="bar"

By setting plot_type="scatter", each value is represented as a
vertical bar.

ga_instance.plot_new_solution_rate(plot_type="bar")
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Genes


plot_genes()

The plot_genes() method is the third option to visualize the PyGAD
results. The plot_genes() method creates, shows, and returns a
figure that describes each gene. It has different options to create the
figures which helps to:


	Explore the gene value for each generation by creating a normal plot.


	Create a histogram for each gene.


	Create a boxplot.




It works only after completing at least 1 generation. If no generation
is completed, an exception is raised. If no generation is completed (at
least 1), an exception is raised.

This method accepts the following parameters:


	title: Title of the figure.


	xlabel: X-axis label.


	ylabel: Y-axis label.


	linewidth: Line width of the plot. Defaults to 3.


	font_size: Font size for the labels and title. Defaults to
14.


	plot_type: Type of the plot which can be either "plot"
(default), "scatter", or "bar".


	graph_type: Type of the graph which can be either "plot"
(default), "boxplot", or "histogram".


	fill_color: Fill color of the graph which defaults to
"#3870FF". This has no effect if graph_type="plot".


	color: Color of the plot which defaults to "#3870FF".


	solutions: Defaults to "all" which means use all solutions.
If "best" then only the best solutions are used.


	save_dir: Directory to save the figure.




This method has 3 control variables:


	graph_type="plot": Can be "plot" (default), "boxplot", or
"histogram".


	plot_type="plot": Identical to the plot_type parameter
explored in the plot_fitness() and plot_new_solution_rate()
methods.


	solutions="all": Can be "all" (default) or "best".




These 3 parameters controls the style of the output figure.

The graph_type parameter selects the type of the graph which helps
to explore the gene values as:


	A normal plot.


	A histogram.


	A box and whisker plot.




The plot_type parameter works only when the type of the graph is set
to "plot".

The solutions parameter selects whether the genes come from all
solutions in the population or from just the best solutions.

An exception is raised if:


	solutions="all" while save_solutions=False in the constructor
of the pygad.GA class. .


	solutions="best" while save_best_solutions=False in the
constructor of the pygad.GA class. .





graph_type="plot"

When graph_type="plot", then the figure creates a normal graph where
the relationship between the gene values and the generation numbers is
represented as a continuous plot, scattered points, or bars.


plot_type="plot"

Because the default value for both graph_type and plot_type is
"plot", then all of the lines below creates the same figure. This
figure is helpful to know whether a gene value lasts for more
generations as an indication of the best value for this gene. For
example, the value 16 for the gene with index 5 (at column 2 and row 2
of the next graph) lasted for 83 generations.

ga_instance.plot_genes()

ga_instance.plot_genes(graph_type="plot")

ga_instance.plot_genes(plot_type="plot")

ga_instance.plot_genes(graph_type="plot",
                       plot_type="plot")





[image: ]
As the default value for the solutions parameter is "all", then
the following method calls generate the same plot.

ga_instance.plot_genes(solutions="all")

ga_instance.plot_genes(graph_type="plot",
                       solutions="all")

ga_instance.plot_genes(plot_type="plot",
                       solutions="all")

ga_instance.plot_genes(graph_type="plot",
                       plot_type="plot",
                       solutions="all")







plot_type="scatter"

The following calls of the plot_genes() method create the same
scatter plot.

ga_instance.plot_genes(plot_type="scatter")

ga_instance.plot_genes(graph_type="plot",
                       plot_type="scatter",
                       solutions='all')





[image: ]


plot_type="bar"

ga_instance.plot_genes(plot_type="bar")

ga_instance.plot_genes(graph_type="plot",
                       plot_type="bar",
                       solutions='all')
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graph_type="boxplot"

By setting graph_type to "boxplot", then a box and whisker graph
is created. Now, the plot_type parameter has no effect.

The following 2 calls of the plot_genes() method create the same
figure as the default value for the solutions parameter is
"all".

ga_instance.plot_genes(graph_type="boxplot")

ga_instance.plot_genes(graph_type="boxplot",
                       solutions='all')





[image: ]


graph_type="histogram"

For graph_type="boxplot", then a histogram is created for each gene.
Similar to graph_type="boxplot", the plot_type parameter has no
effect.

The following 2 calls of the plot_genes() method create the same
figure as the default value for the solutions parameter is
"all".

ga_instance.plot_genes(graph_type="histogram")

ga_instance.plot_genes(graph_type="histogram",
                       solutions='all')





[image: ]
All the previous figures can be created for only the best solutions by
setting solutions="best".






            

          

      

      

    

  

    
      
          
            
  
pygad.helper Module

This section of the PyGAD’s library documentation discusses the
pygad.helper module.

Yet, this module has a submodule called unique that has a class
named Unique with the following helper methods. Such methods help to
check and fix duplicate values in the genes of a solution.


	solve_duplicate_genes_randomly(): Solves the duplicates in a
solution by randomly selecting new values for the duplicating genes.


	solve_duplicate_genes_by_space(): Solves the duplicates in a
solution by selecting values for the duplicating genes from the gene
space


	unique_int_gene_from_range(): Finds a unique integer value for
the gene.


	unique_genes_by_space(): Loops through all the duplicating genes
to find unique values that from their gene spaces to solve the
duplicates. For each duplicating gene, a call to the
unique_gene_by_space() is made.


	unique_gene_by_space(): Returns a unique gene value for a single
gene based on its value space to solve the duplicates.







            

          

      

      

    

  

    
      
          
            
  
pygad.nn Module

This section of the PyGAD’s library documentation discusses the
pygad.nn module.

Using the pygad.nn module, artificial neural networks are created.
The purpose of this module is to only implement the forward pass of
a neural network without using a training algorithm. The pygad.nn
module builds the network layers, implements the activations functions,
trains the network, makes predictions, and more.

Later, the pygad.gann module is used to train the pygad.nn
network using the genetic algorithm built in the pygad module.

Starting from PyGAD
2.7.1 [https://pygad.readthedocs.io/en/latest/Footer.html#pygad-2-7-1],
the pygad.nn module supports both classification and regression
problems. For more information, check the problem_type parameter in
the pygad.nn.train() and pygad.nn.predict() functions.



Supported Layers

Each layer supported by the pygad.nn module has a corresponding
class. The layers and their classes are:


	Input: Implemented using the pygad.nn.InputLayer class.


	Dense (Fully Connected): Implemented using the
pygad.nn.DenseLayer class.




In the future, more layers will be added. The next subsections discuss
such layers.


pygad.nn.InputLayer Class

The pygad.nn.InputLayer class creates the input layer for the neural
network. For each network, there is only a single input layer. The
network architecture must start with an input layer.

This class has no methods or class attributes. All it has is a
constructor that accepts a parameter named num_neurons representing
the number of neurons in the input layer.

An instance attribute named num_neurons is created within the
constructor to keep such a number. Here is an example of building an
input layer with 20 neurons.

input_layer = pygad.nn.InputLayer(num_neurons=20)





Here is how the single attribute num_neurons within the instance of
the pygad.nn.InputLayer class can be accessed.

num_input_neurons = input_layer.num_neurons

print("Number of input neurons =", num_input_neurons)





This is everything about the input layer.



pygad.nn.DenseLayer Class

Using the pygad.nn.DenseLayer class, dense (fully-connected) layers
can be created. To create a dense layer, just create a new instance of
the class. The constructor accepts the following parameters:


	num_neurons: Number of neurons in the dense layer.


	previous_layer: A reference to the previous layer. Using the
previous_layer attribute, a linked list is created that connects
all network layers.


	activation_function: A string representing the activation
function to be used in this layer. Defaults to "sigmoid".
Currently, the supported values for the activation functions are
"sigmoid", "relu", "softmax" (supported in PyGAD 2.3.0
and higher), and "None" (supported in PyGAD 2.7.0 and higher).
When a layer has its activation function set to "None", then it
means no activation function is applied. For a regression
problem, set the activation function of the output (last) layer to
"None". If all outputs in the regression problem are nonnegative,
then it is possible to use the ReLU function in the output layer.




Within the constructor, the accepted parameters are used as instance
attributes. Besides the parameters, some new instance attributes are
created which are:


	initial_weights: The initial weights for the dense layer.


	trained_weights: The trained weights of the dense layer. This
attribute is initialized by the value in the initial_weights
attribute.




Here is an example for creating a dense layer with 12 neurons. Note that
the previous_layer parameter is assigned to the input layer
input_layer.

dense_layer = pygad.nn.DenseLayer(num_neurons=12,
                                  previous_layer=input_layer,
                                  activation_function="relu")





Here is how to access some attributes in the dense layer:

num_dense_neurons = dense_layer.num_neurons
dense_initail_weights = dense_layer.initial_weights

print("Number of dense layer attributes =", num_dense_neurons)
print("Initial weights of the dense layer :", dense_initail_weights)





Because dense_layer holds a reference to the input layer, then the
number of input neurons can be accessed.

input_layer = dense_layer.previous_layer
num_input_neurons = input_layer.num_neurons

print("Number of input neurons =", num_input_neurons)





Here is another dense layer. This dense layer’s previous_layer
attribute points to the previously created dense layer.

dense_layer2 = pygad.nn.DenseLayer(num_neurons=5,
                                   previous_layer=dense_layer,
                                   activation_function="relu")





Because dense_layer2 holds a reference to dense_layer in its
previous_layer attribute, then the number of neurons in
dense_layer can be accessed.

dense_layer = dense_layer2.previous_layer
dense_layer_neurons = dense_layer.num_neurons

print("Number of dense neurons =", num_input_neurons)





After getting the reference to dense_layer, we can use it to access
the number of input neurons.

dense_layer = dense_layer2.previous_layer
input_layer = dense_layer.previous_layer
num_input_neurons = input_layer.num_neurons

print("Number of input neurons =", num_input_neurons)





Assuming that dense_layer2 is the last dense layer, then it is
regarded as the output layer.


previous_layer Attribute

The previous_layer attribute in the pygad.nn.DenseLayer class
creates a one way linked list between all the layers in the network
architecture as described by the next figure.

The last (output) layer indexed N points to layer N-1, layer N-1
points to the layer N-2, the layer N-2 points to the layer
N-3, and so on until reaching the end of the linked list which is
layer 1 (input layer).

[image: ]
The one way linked list allows returning all properties of all layers in
the network architecture by just passing the last layer in the network.
The linked list moves from the output layer towards the input layer.

Using the previous_layer attribute of layer N, the layer N-1
can be accessed. Using the previous_layer attribute of layer
N-1, layer N-2 can be accessed. The process continues until
reaching a layer that does not have a previous_layer attribute
(which is the input layer).

The properties of the layers include the weights (initial or trained),
activation functions, and more. Here is how a while loop is used to
iterate through all the layers. The while loop stops only when the
current layer does not have a previous_layer attribute. This layer
is the input layer.

layer = dense_layer2

while "previous_layer" in layer.__init__.__code__.co_varnames:
    print("Number of neurons =", layer.num_neurons)

    # Go to the previous layer.
    layer = layer.previous_layer









Functions to Manipulate Neural Networks

There are a number of functions existing in the pygad.nn module that
helps to manipulate the neural network.


pygad.nn.layers_weights()

Creates and returns a list holding the weights matrices of all layers in
the neural network.

Accepts the following parameters:


	last_layer: A reference to the last (output) layer in the network
architecture.


	initial: When True (default), the function returns the
initial weights of the layers using the layers’
initial_weights attribute. When False, it returns the
trained weights of the layers using the layers’
trained_weights attribute. The initial weights are only needed
before network training starts. The trained weights are needed to
predict the network outputs.




The function uses a while loop to iterate through the layers using
their previous_layer attribute. For each layer, either the initial
weights or the trained weights are returned based on where the
initial parameter is True or False.



pygad.nn.layers_weights_as_vector()

Creates and returns a list holding the weights vectors of all layers
in the neural network. The weights array of each layer is reshaped to
get a vector.

This function is similar to the layers_weights() function except
that it returns the weights of each layer as a vector, not as an array.

Accepts the following parameters:


	last_layer: A reference to the last (output) layer in the network
architecture.


	initial: When True (default), the function returns the
initial weights of the layers using the layers’
initial_weights attribute. When False, it returns the
trained weights of the layers using the layers’
trained_weights attribute. The initial weights are only needed
before network training starts. The trained weights are needed to
predict the network outputs.




The function uses a while loop to iterate through the layers using
their previous_layer attribute. For each layer, either the initial
weights or the trained weights are returned based on where the
initial parameter is True or False.



pygad.nn.layers_weights_as_matrix()

Converts the network weights from vectors to matrices.

Compared to the layers_weights_as_vectors() function that only
accepts a reference to the last layer and returns the network weights as
vectors, this function accepts a reference to the last layer in addition
to a list holding the weights as vectors. Such vectors are converted
into matrices.

Accepts the following parameters:


	last_layer: A reference to the last (output) layer in the network
architecture.


	vector_weights: The network weights as vectors where the weights
of each layer form a single vector.




The function uses a while loop to iterate through the layers using
their previous_layer attribute. For each layer, the shape of its
weights array is returned. This shape is used to reshape the weights
vector of the layer into a matrix.



pygad.nn.layers_activations()

Creates and returns a list holding the names of the activation functions
of all layers in the neural network.

Accepts the following parameter:


	last_layer: A reference to the last (output) layer in the network
architecture.




The function uses a while loop to iterate through the layers using
their previous_layer attribute. For each layer, the name of the
activation function used is returned using the layer’s
activation_function attribute.



pygad.nn.sigmoid()

Applies the sigmoid function and returns its result.

Accepts the following parameters:


	sop: The input to which the sigmoid function is applied.






pygad.nn.relu()

Applies the rectified linear unit (ReLU) function and returns its
result.

Accepts the following parameters:


	sop: The input to which the relu function is applied.






pygad.nn.softmax()

Applies the softmax function and returns its result.

Accepts the following parameters:


	sop: The input to which the softmax function is applied.






pygad.nn.train()

Trains the neural network.

Accepts the following parameters:


	num_epochs: Number of epochs.


	last_layer: Reference to the last (output) layer in the network
architecture.


	data_inputs: Data features.


	data_outputs: Data outputs.


	problem_type: The type of the problem which can be either
"classification" or "regression". Added in PyGAD 2.7.0 and
higher.


	learning_rate: Learning rate.




For each epoch, all the data samples are fed to the network to return
their predictions. After each epoch, the weights are updated using only
the learning rate. No learning algorithm is used because the purpose of
this project is to only build the forward pass of training a neural
network.



pygad.nn.update_weights()

Calculates and returns the updated weights. Even no training algorithm
is used in this project, the weights are updated using the learning
rate. It is not the best way to update the weights but it is better than
keeping it as it is by making some small changes to the weights.

Accepts the following parameters:


	weights: The current weights of the network.


	network_error: The network error.


	learning_rate: The learning rate.






pygad.nn.update_layers_trained_weights()

After the network weights are trained, this function updates the
trained_weights attribute of each layer by the weights calculated
after passing all the epochs (such weights are passed in the
final_weights parameter)

By just passing a reference to the last layer in the network (i.e.
output layer) in addition to the final weights, this function updates
the trained_weights attribute of all layers.

Accepts the following parameters:


	last_layer: A reference to the last (output) layer in the network
architecture.


	final_weights: An array of weights of all layers in the network
after passing through all the epochs.




The function uses a while loop to iterate through the layers using
their previous_layer attribute. For each layer, its
trained_weights attribute is assigned the weights of the layer from
the final_weights parameter.



pygad.nn.predict()

Uses the trained weights for predicting the samples’ outputs. It returns
a list of the predicted outputs for all samples.

Accepts the following parameters:


	last_layer: A reference to the last (output) layer in the network
architecture.


	data_inputs: Data features.


	problem_type: The type of the problem which can be either
"classification" or "regression". Added in PyGAD 2.7.0 and
higher.




All the data samples are fed to the network to return their predictions.




Helper Functions

There are functions in the pygad.nn module that does not directly
manipulate the neural networks.


pygad.nn.to_vector()

Converts a passed NumPy array (of any dimensionality) to its array
parameter into a 1D vector and returns the vector.

Accepts the following parameters:


	array: The NumPy array to be converted into a 1D vector.






pygad.nn.to_array()

Converts a passed vector to its vector parameter into a NumPy array
and returns the array.

Accepts the following parameters:


	vector: The 1D vector to be converted into an array.


	shape: The target shape of the array.







Supported Activation Functions

The supported activation functions are:


	Sigmoid: Implemented using the pygad.nn.sigmoid() function.


	Rectified Linear Unit (ReLU): Implemented using the
pygad.nn.relu() function.


	Softmax: Implemented using the pygad.nn.softmax() function.






Steps to Build a Neural Network

This section discusses how to use the pygad.nn module for building a
neural network. The summary of the steps are as follows:


	Reading the Data


	Building the Network Architecture


	Training the Network


	Making Predictions


	Calculating Some Statistics





Reading the Data

Before building the network architecture, the first thing to do is to
prepare the data that will be used for training the network.

In this example, 4 classes of the Fruits360 dataset are used for
preparing the training data. The 4 classes are:


	Apple
Braeburn [https://github.com/ahmedfgad/NumPyANN/tree/master/apple]:
This class’s data is available at
https://github.com/ahmedfgad/NumPyANN/tree/master/apple


	Lemon
Meyer [https://github.com/ahmedfgad/NumPyANN/tree/master/lemon]:
This class’s data is available at
https://github.com/ahmedfgad/NumPyANN/tree/master/lemon


	Mango [https://github.com/ahmedfgad/NumPyANN/tree/master/mango]:
This class’s data is available at
https://github.com/ahmedfgad/NumPyANN/tree/master/mango


	Raspberry [https://github.com/ahmedfgad/NumPyANN/tree/master/raspberry]:
This class’s data is available at
https://github.com/ahmedfgad/NumPyANN/tree/master/raspberry




The features from such 4 classes are extracted according to the next
code. This code reads the raw images of the 4 classes of the dataset,
prepares the features and the outputs as NumPy arrays, and saves the
arrays in 2 files.

This code extracts a feature vector from each image representing the
color histogram of the HSV space’s hue channel.

import numpy
import skimage.io, skimage.color, skimage.feature
import os

fruits = ["apple", "raspberry", "mango", "lemon"]
# Number of samples in the datset used = 492+490+490+490=1,962
# 360 is the length of the feature vector.
dataset_features = numpy.zeros(shape=(1962, 360))
outputs = numpy.zeros(shape=(1962))

idx = 0
class_label = 0
for fruit_dir in fruits:
    curr_dir = os.path.join(os.path.sep, fruit_dir)
    all_imgs = os.listdir(os.getcwd()+curr_dir)
    for img_file in all_imgs:
        if img_file.endswith(".jpg"): # Ensures reading only JPG files.
            fruit_data = skimage.io.imread(fname=os.path.sep.join([os.getcwd(), curr_dir, img_file]), as_gray=False)
            fruit_data_hsv = skimage.color.rgb2hsv(rgb=fruit_data)
            hist = numpy.histogram(a=fruit_data_hsv[:, :, 0], bins=360)
            dataset_features[idx, :] = hist[0]
            outputs[idx] = class_label
            idx = idx + 1
    class_label = class_label + 1

# Saving the extracted features and the outputs as NumPy files.
numpy.save("dataset_features.npy", dataset_features)
numpy.save("outputs.npy", outputs)





To save your time, the training data is already prepared and 2 files
created by the next code are available for download at these links:


	dataset_features.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy]:
The features
https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy


	outputs.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy]:
The class labels
https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy




The
outputs.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy]
file gives the following labels for the 4 classes:


	Apple
Braeburn [https://github.com/ahmedfgad/NumPyANN/tree/master/apple]:
Class label is 0


	Lemon
Meyer [https://github.com/ahmedfgad/NumPyANN/tree/master/lemon]:
Class label is 1


	Mango [https://github.com/ahmedfgad/NumPyANN/tree/master/mango]:
Class label is 2


	Raspberry [https://github.com/ahmedfgad/NumPyANN/tree/master/raspberry]:
Class label is 3




The project has 4 folders holding the images for the 4 classes.

After the 2 files are created, then just read them to return the NumPy
arrays according to the next 2 lines:

data_inputs = numpy.load("dataset_features.npy")
data_outputs = numpy.load("outputs.npy")





After the data is prepared, next is to create the network architecture.



Building the Network Architecture

The input layer is created by instantiating the pygad.nn.InputLayer
class according to the next code. A network can only have a single input
layer.

import pygad.nn
num_inputs = data_inputs.shape[1]

input_layer = pygad.nn.InputLayer(num_inputs)





After the input layer is created, next is to create a number of dense
layers according to the next code. Normally, the last dense layer is
regarded as the output layer. Note that the output layer has a number of
neurons equal to the number of classes in the dataset which is 4.

hidden_layer = pygad.nn.DenseLayer(num_neurons=HL2_neurons, previous_layer=input_layer, activation_function="relu")
output_layer = pygad.nn.DenseLayer(num_neurons=4, previous_layer=hidden_layer2, activation_function="softmax")





After both the data and the network architecture are prepared, the next
step is to train the network.



Training the Network

Here is an example of using the pygad.nn.train() function.

pygad.nn.train(num_epochs=10,
               last_layer=output_layer,
               data_inputs=data_inputs,
               data_outputs=data_outputs,
               learning_rate=0.01)





After training the network, the next step is to make predictions.



Making Predictions

The pygad.nn.predict() function uses the trained network for making
predictions. Here is an example.

predictions = pygad.nn.predict(last_layer=output_layer, data_inputs=data_inputs)





It is not expected to have high accuracy in the predictions because no
training algorithm is used.



Calculating Some Statistics

Based on the predictions the network made, some statistics can be
calculated such as the number of correct and wrong predictions in
addition to the classification accuracy.

num_wrong = numpy.where(predictions != data_outputs)[0]
num_correct = data_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/data_outputs.size)
print(f"Number of correct classifications : {num_correct}.")
print(f"Number of wrong classifications : {num_wrong.size}.")
print(f"Classification accuracy : {accuracy}.")





It is very important to note that it is not expected that the
classification accuracy is high because no training algorithm is used.
Please check the documentation of the pygad.gann module for training
the network using the genetic algorithm.




Examples

This section gives the complete code of some examples that build neural
networks using pygad.nn. Each subsection builds a different network.


XOR Classification

This is an example of building a network with 1 hidden layer with 2
neurons for building a network that simulates the XOR logic gate.
Because the XOR problem has 2 classes (0 and 1), then the output layer
has 2 neurons, one for each class.

import numpy
import pygad.nn

# Preparing the NumPy array of the inputs.
data_inputs = numpy.array([[1, 1],
                           [1, 0],
                           [0, 1],
                           [0, 0]])

# Preparing the NumPy array of the outputs.
data_outputs = numpy.array([0,
                            1,
                            1,
                            0])

# The number of inputs (i.e. feature vector length) per sample
num_inputs = data_inputs.shape[1]
# Number of outputs per sample
num_outputs = 2

HL1_neurons = 2

# Building the network architecture.
input_layer = pygad.nn.InputLayer(num_inputs)
hidden_layer1 = pygad.nn.DenseLayer(num_neurons=HL1_neurons, previous_layer=input_layer, activation_function="relu")
output_layer = pygad.nn.DenseLayer(num_neurons=num_outputs, previous_layer=hidden_layer1, activation_function="softmax")

# Training the network.
pygad.nn.train(num_epochs=10,
               last_layer=output_layer,
               data_inputs=data_inputs,
               data_outputs=data_outputs,
               learning_rate=0.01)

# Using the trained network for predictions.
predictions = pygad.nn.predict(last_layer=output_layer, data_inputs=data_inputs)

# Calculating some statistics
num_wrong = numpy.where(predictions != data_outputs)[0]
num_correct = data_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/data_outputs.size)
print(f"Number of correct classifications : {num_correct}.")
print(f"Number of wrong classifications : {num_wrong.size}.")
print(f"Classification accuracy : {accuracy}.")







Image Classification

This example is discussed in the Steps to Build a Neural Network
section and its complete code is listed below.

Remember to either download or create the
dataset_features.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy]
and
outputs.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy]
files before running this code.

import numpy
import pygad.nn

# Reading the data features. Check the 'extract_features.py' script for extracting the features & preparing the outputs of the dataset.
data_inputs = numpy.load("dataset_features.npy") # Download from https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy

# Optional step for filtering the features using the standard deviation.
features_STDs = numpy.std(a=data_inputs, axis=0)
data_inputs = data_inputs[:, features_STDs > 50]

# Reading the data outputs. Check the 'extract_features.py' script for extracting the features & preparing the outputs of the dataset.
data_outputs = numpy.load("outputs.npy") # Download from https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy

# The number of inputs (i.e. feature vector length) per sample
num_inputs = data_inputs.shape[1]
# Number of outputs per sample
num_outputs = 4

HL1_neurons = 150
HL2_neurons = 60

# Building the network architecture.
input_layer = pygad.nn.InputLayer(num_inputs)
hidden_layer1 = pygad.nn.DenseLayer(num_neurons=HL1_neurons, previous_layer=input_layer, activation_function="relu")
hidden_layer2 = pygad.nn.DenseLayer(num_neurons=HL2_neurons, previous_layer=hidden_layer1, activation_function="relu")
output_layer = pygad.nn.DenseLayer(num_neurons=num_outputs, previous_layer=hidden_layer2, activation_function="softmax")

# Training the network.
pygad.nn.train(num_epochs=10,
               last_layer=output_layer,
               data_inputs=data_inputs,
               data_outputs=data_outputs,
               learning_rate=0.01)

# Using the trained network for predictions.
predictions = pygad.nn.predict(last_layer=output_layer, data_inputs=data_inputs)

# Calculating some statistics
num_wrong = numpy.where(predictions != data_outputs)[0]
num_correct = data_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/data_outputs.size)
print(f"Number of correct classifications : {num_correct}.")
print(f"Number of wrong classifications : {num_wrong.size}.")
print(f"Classification accuracy : {accuracy}.")







Regression Example 1

The next code listing builds a neural network for regression. Here is
what to do to make the code works for regression:


	Set the problem_type parameter in the pygad.nn.train() and
pygad.nn.predict() functions to the string "regression".




pygad.nn.train(...,
               problem_type="regression")

predictions = pygad.nn.predict(...,
                               problem_type="regression")






	Set the activation function for the output layer to the string
"None".




output_layer = pygad.nn.DenseLayer(num_neurons=num_outputs, previous_layer=hidden_layer1, activation_function="None")






	Calculate the prediction error according to your preferred error
function. Here is how the mean absolute error is calculated.




abs_error = numpy.mean(numpy.abs(predictions - data_outputs))
print(f"Absolute error : {abs_error}.")





Here is the complete code. Yet, there is no algorithm used to train the
network and thus the network is expected to give bad results. Later, the
pygad.gann module is used to train either a regression or
classification networks.

import numpy
import pygad.nn

# Preparing the NumPy array of the inputs.
data_inputs = numpy.array([[2, 5, -3, 0.1],
                           [8, 15, 20, 13]])

# Preparing the NumPy array of the outputs.
data_outputs = numpy.array([0.1,
                            1.5])

# The number of inputs (i.e. feature vector length) per sample
num_inputs = data_inputs.shape[1]
# Number of outputs per sample
num_outputs = 1

HL1_neurons = 2

# Building the network architecture.
input_layer = pygad.nn.InputLayer(num_inputs)
hidden_layer1 = pygad.nn.DenseLayer(num_neurons=HL1_neurons, previous_layer=input_layer, activation_function="relu")
output_layer = pygad.nn.DenseLayer(num_neurons=num_outputs, previous_layer=hidden_layer1, activation_function="None")

# Training the network.
pygad.nn.train(num_epochs=100,
               last_layer=output_layer,
               data_inputs=data_inputs,
               data_outputs=data_outputs,
               learning_rate=0.01,
               problem_type="regression")

# Using the trained network for predictions.
predictions = pygad.nn.predict(last_layer=output_layer,
                         data_inputs=data_inputs,
                         problem_type="regression")

# Calculating some statistics
abs_error = numpy.mean(numpy.abs(predictions - data_outputs))
print(f"Absolute error : {abs_error}.")







Regression Example 2 - Fish Weight Prediction

This example uses the Fish Market Dataset available at Kaggle
(https://www.kaggle.com/aungpyaeap/fish-market). Simply download the CSV
dataset from this
link [https://www.kaggle.com/aungpyaeap/fish-market/download]
(https://www.kaggle.com/aungpyaeap/fish-market/download). The dataset is
also available at the GitHub project of the pygad.nn
module [https://github.com/ahmedfgad/NumPyANN]:
https://github.com/ahmedfgad/NumPyANN

Using the Pandas library, the dataset is read using the read_csv()
function.

data = numpy.array(pandas.read_csv("Fish.csv"))





The last 5 columns in the dataset are used as inputs and the Weight
column is used as output.

# Preparing the NumPy array of the inputs.
data_inputs = numpy.asarray(data[:, 2:], dtype=numpy.float32)

# Preparing the NumPy array of the outputs.
data_outputs = numpy.asarray(data[:, 1], dtype=numpy.float32) # Fish Weight





Note how the activation function at the last layer is set to "None".
Moreover, the problem_type parameter in the pygad.nn.train() and
pygad.nn.predict() functions is set to "regression".

After the pygad.nn.train() function completes, the mean absolute
error is calculated.

abs_error = numpy.mean(numpy.abs(predictions - data_outputs))
print(f"Absolute error : {abs_error}.")





Here is the complete code.

import numpy
import pygad.nn
import pandas

data = numpy.array(pandas.read_csv("Fish.csv"))

# Preparing the NumPy array of the inputs.
data_inputs = numpy.asarray(data[:, 2:], dtype=numpy.float32)

# Preparing the NumPy array of the outputs.
data_outputs = numpy.asarray(data[:, 1], dtype=numpy.float32) # Fish Weight

# The number of inputs (i.e. feature vector length) per sample
num_inputs = data_inputs.shape[1]
# Number of outputs per sample
num_outputs = 1

HL1_neurons = 2

# Building the network architecture.
input_layer = pygad.nn.InputLayer(num_inputs)
hidden_layer1 = pygad.nn.DenseLayer(num_neurons=HL1_neurons, previous_layer=input_layer, activation_function="relu")
output_layer = pygad.nn.DenseLayer(num_neurons=num_outputs, previous_layer=hidden_layer1, activation_function="None")

# Training the network.
pygad.nn.train(num_epochs=100,
               last_layer=output_layer,
               data_inputs=data_inputs,
               data_outputs=data_outputs,
               learning_rate=0.01,
               problem_type="regression")

# Using the trained network for predictions.
predictions = pygad.nn.predict(last_layer=output_layer,
                         data_inputs=data_inputs,
                         problem_type="regression")

# Calculating some statistics
abs_error = numpy.mean(numpy.abs(predictions - data_outputs))
print(f"Absolute error : {abs_error}.")









            

          

      

      

    

  

    
      
          
            
  
pygad.gann Module

This section of the PyGAD’s library documentation discusses the
pygad.gann module.

The pygad.gann module trains neural networks (for either
classification or regression) using the genetic algorithm. It makes use
of the 2 modules pygad and pygad.nn.



pygad.gann.GANN Class

The pygad.gann module has a class named pygad.gann.GANN for
training neural networks using the genetic algorithm. The constructor,
methods, function, and attributes within the class are discussed in this
section.


__init__()

In order to train a neural network using the genetic algorithm, the
first thing to do is to create an instance of the pygad.gann.GANN
class.

The pygad.gann.GANN class constructor accepts the following
parameters:


	num_solutions: Number of neural networks (i.e. solutions) in the
population. Based on the value passed to this parameter, a number of
identical neural networks are created where their parameters are
optimized using the genetic algorithm.


	num_neurons_input: Number of neurons in the input layer.


	num_neurons_output: Number of neurons in the output layer.


	num_neurons_hidden_layers=[]: A list holding the number of
neurons in the hidden layer(s). If empty [], then no hidden
layers are used. For each int value it holds, then a hidden layer
is created with a number of hidden neurons specified by the
corresponding int value. For example,
num_neurons_hidden_layers=[10] creates a single hidden layer with
10 neurons. num_neurons_hidden_layers=[10, 5] creates 2
hidden layers with 10 neurons for the first and 5 neurons for the
second hidden layer.


	output_activation="softmax": The name of the activation function
of the output layer which defaults to "softmax".


	hidden_activations="relu": The name(s) of the activation
function(s) of the hidden layer(s). It defaults to "relu". If
passed as a string, this means the specified activation function will
be used across all the hidden layers. If passed as a list, then it
must have the same length as the length of the
num_neurons_hidden_layers list. An exception is raised if their
lengths are different. When hidden_activations is a list, a
one-to-one mapping between the num_neurons_hidden_layers and
hidden_activations lists occurs.




In order to validate the parameters passed to the pygad.gann.GANN
class constructor, the pygad.gann.validate_network_parameters()
function is called.



Instance Attributes

All the parameters in the pygad.gann.GANN class constructor are used
as instance attributes. Besides such attributes, there are other
attributes added to the instances from the pygad.gann.GANN class
which are:


	parameters_validated: If True, then the parameters passed to
the GANN class constructor are valid. Its initial value is False.


	population_networks: A list holding references to all the
solutions (i.e. neural networks) used in the population.






Methods in the GANN Class

This section discusses the methods available for instances of the
pygad.gann.GANN class.


create_population()

The create_population() method creates the initial population of the
genetic algorithm as a list of neural networks (i.e. solutions). For
each network to be created, the pygad.gann.create_network() function
is called.

Each element in the list holds a reference to the last (i.e. output)
layer for the network. The method does not accept any parameter and it
accesses all the required details from the pygad.gann.GANN instance.

The method returns the list holding the references to the networks. This
list is later assigned to the population_networks attribute of the
instance.



update_population_trained_weights()

The update_population_trained_weights() method updates the
trained_weights attribute of the layers of each network (check the
documentation of the pygad.nn.DenseLayer
class [https://github.com/ahmedfgad/NumPyANN#nndenselayer-class] for
more information) according to the weights passed in the
population_trained_weights parameter.

Accepts the following parameters:


	population_trained_weights: A list holding the trained weights of
all networks as matrices. Such matrices are to be assigned to the
trained_weights attribute of all layers of all networks.








Functions in the pygad.gann Module

This section discusses the functions in the pygad.gann module.


pygad.gann.validate_network_parameters()

Validates the parameters passed to the constructor of the
pygad.gann.GANN class. If at least one an invalid parameter exists,
an exception is raised and the execution stops.

The function accepts the same parameters passed to the constructor of
the pygad.gann.GANN class. Please check the documentation of such
parameters in the section discussing the class constructor.

The reason why this function sets a default value to the
num_solutions parameter is differentiating whether a population of
networks or a single network is to be created. If None, then a
single network will be created. If not None, then a population of
networks is to be created.

If the value passed to the hidden_activations parameter is a string,
not a list, then a list is created by replicating the passed name of the
activation function a number of times equal to the number of hidden
layers (i.e. the length of the num_neurons_hidden_layers parameter).

Returns a list holding the name(s) of the activation function(s) of the
hidden layer(s).



pygad.gann.create_network()

Creates a neural network as a linked list between the input, hidden, and
output layers where the layer at index N (which is the last/output
layer) references the layer at index N-1 (which is a hidden layer) using
its previous_layer attribute. The input layer does not reference any
layer because it is the last layer in the linked list.

In addition to the parameters_validated parameter, this function
accepts the same parameters passed to the constructor of the
pygad.gann.GANN class except for the num_solutions parameter
because only a single network is created out of the create_network()
function.

parameters_validated: If False, then the parameters are not
validated and a call to the validate_network_parameters() function
is made.

Returns the reference to the last layer in the network architecture
which is the output layer. Based on such a reference, all network layers
can be fetched.



pygad.gann.population_as_vectors()

Accepts the population as networks and returns a list holding all
weights of the layers of each solution (i.e. network) in the population
as a vector.

For example, if the population has 6 solutions (i.e. networks), this
function accepts references to such networks and returns a list with 6
vectors, one for each network (i.e. solution). Each vector holds the
weights for all layers for a single network.

Accepts the following parameters:


	population_networks: A list holding references to the output
(last) layers of the neural networks used in the population.




Returns a list holding the weights vectors for all solutions (i.e.
networks).



pygad.gann.population_as_matrices()

Accepts the population as both networks and weights vectors and returns
the weights of all layers of each solution (i.e. network) in the
population as a matrix.

For example, if the population has 6 solutions (i.e. networks), this
function returns a list with 6 matrices, one for each network holding
its weights for all layers.

Accepts the following parameters:


	population_networks: A list holding references to the output
(last) layers of the neural networks used in the population.


	population_vectors: A list holding the weights of all networks as
vectors. Such vectors are to be converted into matrices.




Returns a list holding the weights matrices for all solutions (i.e.
networks).




Steps to Build and Train Neural Networks using Genetic Algorithm

The steps to use this project for building and training a neural network
using the genetic algorithm are as follows:


	Prepare the training data.


	Create an instance of the pygad.gann.GANN class.


	Fetch the population weights as vectors.


	Prepare the fitness function.


	Prepare the generation callback function.


	Create an instance of the pygad.GA class.


	Run the created instance of the pygad.GA class.


	Plot the Fitness Values


	Information about the best solution.


	Making predictions using the trained weights.


	Calculating some statistics.




Let’s start covering all of these steps.


Prepare the Training Data

Before building and training neural networks, the training data (input
and output) is to be prepared. The inputs and the outputs of the
training data are NumPy arrays.

Here is an example of preparing the training data for the XOR problem.

For the input array, each element must be a list representing the inputs
(i.e. features) for the sample. If there are 200 samples and each sample
has 50 features, then the shape of the inputs array is (200, 50).
The variable num_inputs holds the length of each sample which is 2
in this example.

data_inputs = numpy.array([[1, 1],
                           [1, 0],
                           [0, 1],
                           [0, 0]])

data_outputs = numpy.array([0,
                            1,
                            1,
                            0])

num_inputs = data_inputs.shape[1]





For the output array, each element must be a single number representing
the class label of the sample. The class labels must start at 0. So,
if there are 200 samples, then the shape of the output array is
(200). If there are 5 classes in the data, then the values of all
the 200 elements in the output array must range from 0 to 4 inclusive.
Generally, the class labels start from 0 to N-1 where N is
the number of classes.

For the XOR example, there are 2 classes and thus their labels are 0 and
1. The num_classes variable is assigned to 2.

Note that the project only supports classification problems where each
sample is assigned to only one class.



Create an Instance of the pygad.gann.GANN Class

After preparing the input data, an instance of the pygad.gann.GANN
class is created by passing the appropriate parameters.

Here is an example that creates a network for the XOR problem. The
num_solutions parameter is set to 6 which means the genetic
algorithm population will have 6 solutions (i.e. networks). All of these
6 neural networks will have the same architectures as specified by the
other parameters.

The output layer has 2 neurons because there are only 2 classes (0 and
1).

import pygad.gann
import pygad.nn

num_solutions = 6
GANN_instance = pygad.gann.GANN(num_solutions=num_solutions,
                                num_neurons_input=num_inputs,
                                num_neurons_hidden_layers=[2],
                                num_neurons_output=2,
                                hidden_activations=["relu"],
                                output_activation="softmax")





The architecture of the created network has the following layers:


	An input layer with 2 neurons (i.e. inputs)


	A single hidden layer with 2 neurons.


	An output layer with 2 neurons (i.e. classes).




The weights of the network are as follows:


	Between the input and the hidden layer, there is a weights matrix of
size equal to (number inputs x number of hidden neurons) = (2x2).


	Between the hidden and the output layer, there is a weights matrix of
size equal to
(number of hidden neurons x number of outputs) = (2x2).




The activation function used for the output layer is softmax. The
relu activation function is used for the hidden layer.

After creating the instance of the pygad.gann.GANN class next is to
fetch the weights of the population as a list of vectors.



Fetch the Population Weights as Vectors

For the genetic algorithm, the parameters (i.e. genes) of each solution
are represented as a single vector.

For the task of training the network for the XOR problem, the weights of
each network in the population are not represented as a vector but 2
matrices each of size 2x2.

To create a list holding the population weights as vectors, one for each
network, the pygad.gann.population_as_vectors() function is used.

population_vectors = pygad.gann.population_as_vectors(population_networks=GANN_instance.population_networks)





After preparing the population weights as a set of vectors, next is to
prepare 2 functions which are:


	Fitness function.


	Callback function after each generation.






Prepare the Fitness Function

The PyGAD library works by allowing the users to customize the genetic
algorithm for their own problems. Because the problems differ in how the
fitness values are calculated, then PyGAD allows the user to use a
custom function as a maximization fitness function. This function must
accept 2 positional parameters representing the following:


	The solution.


	The solution index in the population.




The fitness function must return a single number representing the
fitness. The higher the fitness value, the better the solution.

Here is the implementation of the fitness function for training a neural
network. It uses the pygad.nn.predict() function to predict the
class labels based on the current solution’s weights. The
pygad.nn.predict() function uses the trained weights available in
the trained_weights attribute of each layer of the network for
making predictions.

Based on such predictions, the classification accuracy is calculated.
This accuracy is used as the fitness value of the solution. Finally, the
fitness value is returned.

def fitness_func(ga_instance, solution, sol_idx):
    global GANN_instance, data_inputs, data_outputs

    predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[sol_idx],
                                   data_inputs=data_inputs)
    correct_predictions = numpy.where(predictions == data_outputs)[0].size
    solution_fitness = (correct_predictions/data_outputs.size)*100

    return solution_fitness







Prepare the Generation Callback Function

After each generation of the genetic algorithm, the fitness function
will be called to calculate the fitness value of each solution. Within
the fitness function, the pygad.nn.predict() function is used for
predicting the outputs based on the current solution’s
trained_weights attribute. Thus, it is required that such an
attribute is updated by weights evolved by the genetic algorithm after
each generation.

PyGAD 2.0.0 and higher has a new parameter accepted by the pygad.GA
class constructor named on_generation. It could be assigned to a
function that is called after each generation. The function must accept
a single parameter representing the instance of the pygad.GA class.

This callback function can be used to update the trained_weights
attribute of layers of each network in the population.

Here is the implementation for a function that updates the
trained_weights attribute of the layers of the population networks.

It works by converting the current population from the vector form to
the matric form using the pygad.gann.population_as_matrices()
function. It accepts the population as vectors and returns it as
matrices.

The population matrices are then passed to the
update_population_trained_weights() method in the pygad.gann
module to update the trained_weights attribute of all layers for all
solutions within the population.

def callback_generation(ga_instance):
    global GANN_instance

    population_matrices = pygad.gann.population_as_matrices(population_networks=GANN_instance.population_networks, population_vectors=ga_instance.population)
    GANN_instance.update_population_trained_weights(population_trained_weights=population_matrices)

    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")





After preparing the fitness and callback function, next is to create an
instance of the pygad.GA class.



Create an Instance of the pygad.GA Class

Once the parameters of the genetic algorithm are prepared, an instance
of the pygad.GA class can be created.

Here is an example.

initial_population = population_vectors.copy()

num_parents_mating = 4

num_generations = 500

mutation_percent_genes = 5

parent_selection_type = "sss"

crossover_type = "single_point"

mutation_type = "random"

keep_parents = 1

init_range_low = -2
init_range_high = 5

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       mutation_percent_genes=mutation_percent_genes,
                       init_range_low=init_range_low,
                       init_range_high=init_range_high,
                       parent_selection_type=parent_selection_type,
                       crossover_type=crossover_type,
                       mutation_type=mutation_type,
                       keep_parents=keep_parents,
                       on_generation=callback_generation)





The last step for training the neural networks using the genetic
algorithm is calling the run() method.



Run the Created Instance of the pygad.GA Class

By calling the run() method from the pygad.GA instance, the
genetic algorithm will iterate through the number of generations
specified in its num_generations parameter.

ga_instance.run()







Plot the Fitness Values

After the run() method completes, the plot_fitness() method can
be called to show how the fitness values evolve by generation. A fitness
value (i.e. accuracy) of 100 is reached after around 180 generations.

ga_instance.plot_fitness()





[image: ]
By running the code again, a different initial population is created and
thus a classification accuracy of 100 can be reached using a less number
of generations. On the other hand, a different initial population might
cause 100% accuracy to be reached using more generations or not reached
at all.



Information about the Best Solution

The following information about the best solution in the last population
is returned using the best_solution() method in the pygad.GA
class.


	Solution


	Fitness value of the solution


	Index of the solution within the population




Here is how such information is returned. The fitness value (i.e.
accuracy) is 100.

solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")





Parameters of the best solution : [3.55081391 -3.21562011 -14.2617784 0.68044231 -1.41258145 -3.2979315 1.58136006 -7.83726169]
Fitness value of the best solution = 100.0
Index of the best solution : 0





Using the best_solution_generation attribute of the instance from
the pygad.GA class, the generation number at which the best
fitness is reached could be fetched. According to the result, the best
fitness value is reached after 182 generations.

if ga_instance.best_solution_generation != -1:
    print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")





Best solution reached after 182 generations.







Making Predictions using the Trained Weights

The pygad.nn.predict() function can be used to make predictions
using the trained network. As printed, the network is able to predict
the labels correctly.

predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[solution_idx], data_inputs=data_inputs)
print(f"Predictions of the trained network : {predictions}")





Predictions of the trained network : [0. 1. 1. 0.]







Calculating Some Statistics

Based on the predictions the network made, some statistics can be
calculated such as the number of correct and wrong predictions in
addition to the classification accuracy.

num_wrong = numpy.where(predictions != data_outputs)[0]
num_correct = data_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/data_outputs.size)
print(f"Number of correct classifications : {num_correct}.")
print(f"Number of wrong classifications : {num_wrong.size}.")
print(f"Classification accuracy : {accuracy}.")





Number of correct classifications : 4
print("Number of wrong classifications : 0
Classification accuracy : 100








Examples

This section gives the complete code of some examples that build and
train neural networks using the genetic algorithm. Each subsection
builds a different network.


XOR Classification

This example is discussed in the Steps to Build and Train Neural
Networks using Genetic Algorithm section that builds the XOR gate and
its complete code is listed below.

import numpy
import pygad
import pygad.nn
import pygad.gann

def fitness_func(ga_instance, solution, sol_idx):
    global GANN_instance, data_inputs, data_outputs

    # If adaptive mutation is used, sometimes sol_idx is None.
    if sol_idx == None:
        sol_idx = 1

    predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[sol_idx],
                                   data_inputs=data_inputs)
    correct_predictions = numpy.where(predictions == data_outputs)[0].size
    solution_fitness = (correct_predictions/data_outputs.size)*100

    return solution_fitness

def callback_generation(ga_instance):
    global GANN_instance, last_fitness

    population_matrices = pygad.gann.population_as_matrices(population_networks=GANN_instance.population_networks,
                                                            population_vectors=ga_instance.population)

    GANN_instance.update_population_trained_weights(population_trained_weights=population_matrices)

    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")
    print(f"Change     = {ga_instance.best_solution()[1] - last_fitness}")

    last_fitness = ga_instance.best_solution()[1].copy()

# Holds the fitness value of the previous generation.
last_fitness = 0

# Preparing the NumPy array of the inputs.
data_inputs = numpy.array([[1, 1],
                           [1, 0],
                           [0, 1],
                           [0, 0]])

# Preparing the NumPy array of the outputs.
data_outputs = numpy.array([0,
                            1,
                            1,
                            0])

# The length of the input vector for each sample (i.e. number of neurons in the input layer).
num_inputs = data_inputs.shape[1]
# The number of neurons in the output layer (i.e. number of classes).
num_classes = 2

# Creating an initial population of neural networks. The return of the initial_population() function holds references to the networks, not their weights. Using such references, the weights of all networks can be fetched.
num_solutions = 6 # A solution or a network can be used interchangeably.
GANN_instance = pygad.gann.GANN(num_solutions=num_solutions,
                                num_neurons_input=num_inputs,
                                num_neurons_hidden_layers=[2],
                                num_neurons_output=num_classes,
                                hidden_activations=["relu"],
                                output_activation="softmax")

# population does not hold the numerical weights of the network instead it holds a list of references to each last layer of each network (i.e. solution) in the population. A solution or a network can be used interchangeably.
# If there is a population with 3 solutions (i.e. networks), then the population is a list with 3 elements. Each element is a reference to the last layer of each network. Using such a reference, all details of the network can be accessed.
population_vectors = pygad.gann.population_as_vectors(population_networks=GANN_instance.population_networks)

# To prepare the initial population, there are 2 ways:
# 1) Prepare it yourself and pass it to the initial_population parameter. This way is useful when the user wants to start the genetic algorithm with a custom initial population.
# 2) Assign valid integer values to the sol_per_pop and num_genes parameters. If the initial_population parameter exists, then the sol_per_pop and num_genes parameters are useless.
initial_population = population_vectors.copy()

num_parents_mating = 4 # Number of solutions to be selected as parents in the mating pool.

num_generations = 500 # Number of generations.

mutation_percent_genes = [5, 10] # Percentage of genes to mutate. This parameter has no action if the parameter mutation_num_genes exists.

parent_selection_type = "sss" # Type of parent selection.

crossover_type = "single_point" # Type of the crossover operator.

mutation_type = "adaptive" # Type of the mutation operator.

keep_parents = 1 # Number of parents to keep in the next population. -1 means keep all parents and 0 means keep nothing.

init_range_low = -2
init_range_high = 5

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       mutation_percent_genes=mutation_percent_genes,
                       init_range_low=init_range_low,
                       init_range_high=init_range_high,
                       parent_selection_type=parent_selection_type,
                       crossover_type=crossover_type,
                       mutation_type=mutation_type,
                       keep_parents=keep_parents,
                       suppress_warnings=True,
                       on_generation=callback_generation)

ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness()

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

if ga_instance.best_solution_generation != -1:
    print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")

# Predicting the outputs of the data using the best solution.
predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[solution_idx],
                               data_inputs=data_inputs)
print(f"Predictions of the trained network : {predictions}")

# Calculating some statistics
num_wrong = numpy.where(predictions != data_outputs)[0]
num_correct = data_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/data_outputs.size)
print(f"Number of correct classifications : {num_correct}.")
print(f"Number of wrong classifications : {num_wrong.size}.")
print(f"Classification accuracy : {accuracy}.")







Image Classification

In the documentation of the pygad.nn module, a neural network is
created for classifying images from the Fruits360 dataset without being
trained using an optimization algorithm. This section discusses how to
train such a classifier using the genetic algorithm with the help of the
pygad.gann module.

Please make sure that the training data files
dataset_features.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy]
and
outputs.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy]
are available. For downloading them, use these links:


	dataset_features.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy]:
The features
https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy


	outputs.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy]:
The class labels
https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy




After the data is available, here is the complete code that builds and
trains a neural network using the genetic algorithm for classifying
images from 4 classes of the Fruits360 dataset.

Because there are 4 classes, the output layer is assigned has 4 neurons
according to the num_neurons_output parameter of the
pygad.gann.GANN class constructor.

import numpy
import pygad
import pygad.nn
import pygad.gann

def fitness_func(ga_instance, solution, sol_idx):
    global GANN_instance, data_inputs, data_outputs

    predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[sol_idx],
                                   data_inputs=data_inputs)
    correct_predictions = numpy.where(predictions == data_outputs)[0].size
    solution_fitness = (correct_predictions/data_outputs.size)*100

    return solution_fitness

def callback_generation(ga_instance):
    global GANN_instance, last_fitness

    population_matrices = pygad.gann.population_as_matrices(population_networks=GANN_instance.population_networks,
                                                            population_vectors=ga_instance.population)

    GANN_instance.update_population_trained_weights(population_trained_weights=population_matrices)

    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")
    print(f"Change     = {ga_instance.best_solution()[1] - last_fitness}")

    last_fitness = ga_instance.best_solution()[1].copy()

# Holds the fitness value of the previous generation.
last_fitness = 0

# Reading the input data.
data_inputs = numpy.load("dataset_features.npy") # Download from https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy

# Optional step of filtering the input data using the standard deviation.
features_STDs = numpy.std(a=data_inputs, axis=0)
data_inputs = data_inputs[:, features_STDs>50]

# Reading the output data.
data_outputs = numpy.load("outputs.npy") # Download from https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy

# The length of the input vector for each sample (i.e. number of neurons in the input layer).
num_inputs = data_inputs.shape[1]
# The number of neurons in the output layer (i.e. number of classes).
num_classes = 4

# Creating an initial population of neural networks. The return of the initial_population() function holds references to the networks, not their weights. Using such references, the weights of all networks can be fetched.
num_solutions = 8 # A solution or a network can be used interchangeably.
GANN_instance = pygad.gann.GANN(num_solutions=num_solutions,
                                num_neurons_input=num_inputs,
                                num_neurons_hidden_layers=[150, 50],
                                num_neurons_output=num_classes,
                                hidden_activations=["relu", "relu"],
                                output_activation="softmax")

# population does not hold the numerical weights of the network instead it holds a list of references to each last layer of each network (i.e. solution) in the population. A solution or a network can be used interchangeably.
# If there is a population with 3 solutions (i.e. networks), then the population is a list with 3 elements. Each element is a reference to the last layer of each network. Using such a reference, all details of the network can be accessed.
population_vectors = pygad.gann.population_as_vectors(population_networks=GANN_instance.population_networks)

# To prepare the initial population, there are 2 ways:
# 1) Prepare it yourself and pass it to the initial_population parameter. This way is useful when the user wants to start the genetic algorithm with a custom initial population.
# 2) Assign valid integer values to the sol_per_pop and num_genes parameters. If the initial_population parameter exists, then the sol_per_pop and num_genes parameters are useless.
initial_population = population_vectors.copy()

num_parents_mating = 4 # Number of solutions to be selected as parents in the mating pool.

num_generations = 500 # Number of generations.

mutation_percent_genes = 10 # Percentage of genes to mutate. This parameter has no action if the parameter mutation_num_genes exists.

parent_selection_type = "sss" # Type of parent selection.

crossover_type = "single_point" # Type of the crossover operator.

mutation_type = "random" # Type of the mutation operator.

keep_parents = -1 # Number of parents to keep in the next population. -1 means keep all parents and 0 means keep nothing.

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       mutation_percent_genes=mutation_percent_genes,
                       parent_selection_type=parent_selection_type,
                       crossover_type=crossover_type,
                       mutation_type=mutation_type,
                       keep_parents=keep_parents,
                       on_generation=callback_generation)

ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness()

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

if ga_instance.best_solution_generation != -1:
    print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")

# Predicting the outputs of the data using the best solution.
predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[solution_idx],
                               data_inputs=data_inputs)
print(f"Predictions of the trained network : {predictions}")

# Calculating some statistics
num_wrong = numpy.where(predictions != data_outputs)[0]
num_correct = data_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/data_outputs.size)
print(f"Number of correct classifications : {num_correct}.")
print(f"Number of wrong classifications : {num_wrong.size}.")
print(f"Classification accuracy : {accuracy}.")





After training completes, here are the outputs of the print statements.
The number of wrong classifications is only 1 and the accuracy is
99.949%. This accuracy is reached after 482 generations.

Fitness value of the best solution = 99.94903160040775
Index of the best solution : 0
Best fitness value reached after 482 generations.
Number of correct classifications : 1961.
Number of wrong classifications : 1.
Classification accuracy : 99.94903160040775.





The next figure shows how fitness value evolves by generation.
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Regression Example 1

To train a neural network for regression, follow these instructions:


	Set the output_activation parameter in the constructor of the
pygad.gann.GANN class to "None". It is possible to use the
ReLU function if all outputs are nonnegative.




GANN_instance = pygad.gann.GANN(...
                                output_activation="None")






	Wherever the pygad.nn.predict() function is used, set the
problem_type parameter to "regression".




predictions = pygad.nn.predict(...,
                               problem_type="regression")






	Design the fitness function to calculate the error (e.g. mean
absolute error).




def fitness_func(ga_instance, solution, sol_idx):
    ...

    predictions = pygad.nn.predict(...,
                                   problem_type="regression")

    solution_fitness = 1.0/numpy.mean(numpy.abs(predictions - data_outputs))

    return solution_fitness





The next code builds a complete example for building a neural network
for regression.

import numpy
import pygad
import pygad.nn
import pygad.gann

def fitness_func(ga_instance, solution, sol_idx):
    global GANN_instance, data_inputs, data_outputs

    predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[sol_idx],
                                   data_inputs=data_inputs, problem_type="regression")
    solution_fitness = 1.0/numpy.mean(numpy.abs(predictions - data_outputs))

    return solution_fitness

def callback_generation(ga_instance):
    global GANN_instance, last_fitness

    population_matrices = pygad.gann.population_as_matrices(population_networks=GANN_instance.population_networks,
                                                            population_vectors=ga_instance.population)

    GANN_instance.update_population_trained_weights(population_trained_weights=population_matrices)

    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]}")
    print(f"Change     = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1] - last_fitness}")

    last_fitness = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1].copy()

# Holds the fitness value of the previous generation.
last_fitness = 0

# Preparing the NumPy array of the inputs.
data_inputs = numpy.array([[2, 5, -3, 0.1],
                           [8, 15, 20, 13]])

# Preparing the NumPy array of the outputs.
data_outputs = numpy.array([[0.1, 0.2],
                            [1.8, 1.5]])

# The length of the input vector for each sample (i.e. number of neurons in the input layer).
num_inputs = data_inputs.shape[1]

# Creating an initial population of neural networks. The return of the initial_population() function holds references to the networks, not their weights. Using such references, the weights of all networks can be fetched.
num_solutions = 6 # A solution or a network can be used interchangeably.
GANN_instance = pygad.gann.GANN(num_solutions=num_solutions,
                                num_neurons_input=num_inputs,
                                num_neurons_hidden_layers=[2],
                                num_neurons_output=2,
                                hidden_activations=["relu"],
                                output_activation="None")

# population does not hold the numerical weights of the network instead it holds a list of references to each last layer of each network (i.e. solution) in the population. A solution or a network can be used interchangeably.
# If there is a population with 3 solutions (i.e. networks), then the population is a list with 3 elements. Each element is a reference to the last layer of each network. Using such a reference, all details of the network can be accessed.
population_vectors = pygad.gann.population_as_vectors(population_networks=GANN_instance.population_networks)

# To prepare the initial population, there are 2 ways:
# 1) Prepare it yourself and pass it to the initial_population parameter. This way is useful when the user wants to start the genetic algorithm with a custom initial population.
# 2) Assign valid integer values to the sol_per_pop and num_genes parameters. If the initial_population parameter exists, then the sol_per_pop and num_genes parameters are useless.
initial_population = population_vectors.copy()

num_parents_mating = 4 # Number of solutions to be selected as parents in the mating pool.

num_generations = 500 # Number of generations.

mutation_percent_genes = 5 # Percentage of genes to mutate. This parameter has no action if the parameter mutation_num_genes exists.

parent_selection_type = "sss" # Type of parent selection.

crossover_type = "single_point" # Type of the crossover operator.

mutation_type = "random" # Type of the mutation operator.

keep_parents = 1 # Number of parents to keep in the next population. -1 means keep all parents and 0 means keep nothing.

init_range_low = -1
init_range_high = 1

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       mutation_percent_genes=mutation_percent_genes,
                       init_range_low=init_range_low,
                       init_range_high=init_range_high,
                       parent_selection_type=parent_selection_type,
                       crossover_type=crossover_type,
                       mutation_type=mutation_type,
                       keep_parents=keep_parents,
                       on_generation=callback_generation)

ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness()

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

if ga_instance.best_solution_generation != -1:
    print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")

# Predicting the outputs of the data using the best solution.
predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[solution_idx],
                               data_inputs=data_inputs,
                               problem_type="regression")
print(f"Predictions of the trained network : {predictions}")

# Calculating some statistics
abs_error = numpy.mean(numpy.abs(predictions - data_outputs))
print(f"Absolute error : {abs_error}.")





The next figure shows how the fitness value changes for the generations
used.
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Regression Example 2 - Fish Weight Prediction

This example uses the Fish Market Dataset available at Kaggle
(https://www.kaggle.com/aungpyaeap/fish-market). Simply download the CSV
dataset from this
link [https://www.kaggle.com/aungpyaeap/fish-market/download]
(https://www.kaggle.com/aungpyaeap/fish-market/download). The dataset is
also available at the GitHub project of the pygad.gann
module [https://github.com/ahmedfgad/NeuralGenetic]:
https://github.com/ahmedfgad/NeuralGenetic

Using the Pandas library, the dataset is read using the read_csv()
function.

data = numpy.array(pandas.read_csv("Fish.csv"))





The last 5 columns in the dataset are used as inputs and the Weight
column is used as output.

# Preparing the NumPy array of the inputs.
data_inputs = numpy.asarray(data[:, 2:], dtype=numpy.float32)

# Preparing the NumPy array of the outputs.
data_outputs = numpy.asarray(data[:, 1], dtype=numpy.float32) # Fish Weight





Note how the activation function at the last layer is set to "None".
Moreover, the problem_type parameter in the pygad.nn.train() and
pygad.nn.predict() functions is set to "regression". Remember to
design an appropriate fitness function for the regression problem. In
this example, the fitness value is calculated based on the mean absolute
error.

solution_fitness = 1.0/numpy.mean(numpy.abs(predictions - data_outputs))





Here is the complete code.

import numpy
import pygad
import pygad.nn
import pygad.gann
import pandas

def fitness_func(ga_instance, solution, sol_idx):
    global GANN_instance, data_inputs, data_outputs

    predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[sol_idx],
                                   data_inputs=data_inputs, problem_type="regression")
    solution_fitness = 1.0/numpy.mean(numpy.abs(predictions - data_outputs))

    return solution_fitness

def callback_generation(ga_instance):
    global GANN_instance, last_fitness

    population_matrices = pygad.gann.population_as_matrices(population_networks=GANN_instance.population_networks,
                                                            population_vectors=ga_instance.population)

    GANN_instance.update_population_trained_weights(population_trained_weights=population_matrices)

    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]}")
    print(f"Change     = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1] - last_fitness}")

    last_fitness = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1].copy()

# Holds the fitness value of the previous generation.
last_fitness = 0

data = numpy.array(pandas.read_csv("../data/Fish.csv"))

# Preparing the NumPy array of the inputs.
data_inputs = numpy.asarray(data[:, 2:], dtype=numpy.float32)

# Preparing the NumPy array of the outputs.
data_outputs = numpy.asarray(data[:, 1], dtype=numpy.float32)

# The length of the input vector for each sample (i.e. number of neurons in the input layer).
num_inputs = data_inputs.shape[1]

# Creating an initial population of neural networks. The return of the initial_population() function holds references to the networks, not their weights. Using such references, the weights of all networks can be fetched.
num_solutions = 6 # A solution or a network can be used interchangeably.
GANN_instance = pygad.gann.GANN(num_solutions=num_solutions,
                                num_neurons_input=num_inputs,
                                num_neurons_hidden_layers=[2],
                                num_neurons_output=1,
                                hidden_activations=["relu"],
                                output_activation="None")

# population does not hold the numerical weights of the network instead it holds a list of references to each last layer of each network (i.e. solution) in the population. A solution or a network can be used interchangeably.
# If there is a population with 3 solutions (i.e. networks), then the population is a list with 3 elements. Each element is a reference to the last layer of each network. Using such a reference, all details of the network can be accessed.
population_vectors = pygad.gann.population_as_vectors(population_networks=GANN_instance.population_networks)

# To prepare the initial population, there are 2 ways:
# 1) Prepare it yourself and pass it to the initial_population parameter. This way is useful when the user wants to start the genetic algorithm with a custom initial population.
# 2) Assign valid integer values to the sol_per_pop and num_genes parameters. If the initial_population parameter exists, then the sol_per_pop and num_genes parameters are useless.
initial_population = population_vectors.copy()

num_parents_mating = 4 # Number of solutions to be selected as parents in the mating pool.

num_generations = 500 # Number of generations.

mutation_percent_genes = 5 # Percentage of genes to mutate. This parameter has no action if the parameter mutation_num_genes exists.

parent_selection_type = "sss" # Type of parent selection.

crossover_type = "single_point" # Type of the crossover operator.

mutation_type = "random" # Type of the mutation operator.

keep_parents = 1 # Number of parents to keep in the next population. -1 means keep all parents and 0 means keep nothing.

init_range_low = -1
init_range_high = 1

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       mutation_percent_genes=mutation_percent_genes,
                       init_range_low=init_range_low,
                       init_range_high=init_range_high,
                       parent_selection_type=parent_selection_type,
                       crossover_type=crossover_type,
                       mutation_type=mutation_type,
                       keep_parents=keep_parents,
                       on_generation=callback_generation)

ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness()

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

if ga_instance.best_solution_generation != -1:
    print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")

# Predicting the outputs of the data using the best solution.
predictions = pygad.nn.predict(last_layer=GANN_instance.population_networks[solution_idx],
                               data_inputs=data_inputs,
                               problem_type="regression")
print(f"Predictions of the trained network : {predictions}")

# Calculating some statistics
abs_error = numpy.mean(numpy.abs(predictions - data_outputs))
print(f"Absolute error : {abs_error}.")





The next figure shows how the fitness value changes for the 500
generations used.
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pygad.cnn Module

This section of the PyGAD’s library documentation discusses the
pygad.cnn module.

Using the pygad.cnn module, convolutional neural networks (CNNs) are
created. The purpose of this module is to only implement the forward
pass of a convolutional neural network without using a training
algorithm. The pygad.cnn module builds the network layers,
implements the activations functions, trains the network, makes
predictions, and more.

Later, the pygad.gacnn module is used to train the pygad.cnn
network using the genetic algorithm built in the pygad module.



Supported Layers

Each layer supported by the pygad.cnn module has a corresponding
class. The layers and their classes are:


	Input: Implemented using the pygad.cnn.Input2D class.


	Convolution: Implemented using the pygad.cnn.Conv2D class.


	Max Pooling: Implemented using the pygad.cnn.MaxPooling2D
class.


	Average Pooling: Implemented using the
pygad.cnn.AveragePooling2D class.


	Flatten: Implemented using the pygad.cnn.Flatten class.


	ReLU: Implemented using the pygad.cnn.ReLU class.


	Sigmoid: Implemented using the pygad.cnn.Sigmoid class.


	Dense (Fully Connected): Implemented using the
pygad.cnn.Dense class.




In the future, more layers will be added.

Except for the input layer, all of listed layers has 4 instance
attributes that do the same function which are:


	previous_layer: A reference to the previous layer in the CNN
architecture.


	layer_input_size: The size of the input to the layer.


	layer_output_size: The size of the output from the layer.


	layer_output: The latest output generated from the layer. It
default to None.




In addition to such attributes, the layers may have some additional
attributes. The next subsections discuss such layers.


pygad.cnn.Input2D Class

The pygad.cnn.Input2D class creates the input layer for the
convolutional neural network. For each network, there is only a single
input layer. The network architecture must start with an input layer.

This class has no methods or class attributes. All it has is a
constructor that accepts a parameter named input_shape representing
the shape of the input.

The instances from the Input2D class has the following attributes:


	input_shape: The shape of the input to the pygad.cnn.


	layer_output_size




Here is an example of building an input layer with shape
(50, 50, 3).

input_layer = pygad.cnn.Input2D(input_shape=(50, 50, 3))





Here is how to access the attributes within the instance of the
pygad.cnn.Input2D class.

input_shape = input_layer.input_shape
layer_output_size = input_layer.layer_output_size

print("Input2D Input shape =", input_shape)
print("Input2D Output shape =", layer_output_size)





This is everything about the input layer.



pygad.cnn.Conv2D Class

Using the pygad.cnn.Conv2D class, convolution (conv) layers can be
created. To create a convolution layer, just create a new instance of
the class. The constructor accepts the following parameters:


	num_filters: Number of filters.


	kernel_size: Filter kernel size.


	previous_layer: A reference to the previous layer. Using the
previous_layer attribute, a linked list is created that connects
all network layers. For more information about this attribute, please
check the previous_layer attribute section of the pygad.nn
module documentation.


	activation_function=None: A string representing the activation
function to be used in this layer. Defaults to None which means
no activation function is applied while applying the convolution
layer. An activation layer can be added separately in this case. The
supported activation functions in the conv layer are relu and
sigmoid.




Within the constructor, the accepted parameters are used as instance
attributes. Besides the parameters, some new instance attributes are
created which are:


	filter_bank_size: Size of the filter bank in this layer.


	initial_weights: The initial weights for the conv layer.


	trained_weights: The trained weights of the conv layer. This
attribute is initialized by the value in the initial_weights
attribute.


	layer_input_size


	layer_output_size


	layer_output




Here is an example for creating a conv layer with 2 filters and a kernel
size of 3. Note that the previous_layer parameter is assigned to the
input layer input_layer.

conv_layer = pygad.cnn.Conv2D(num_filters=2,
                        kernel_size=3,
                        previous_layer=input_layer,
                        activation_function=None)





Here is how to access some attributes in the dense layer:

filter_bank_size = conv_layer.filter_bank_size
conv_initail_weights = conv_layer.initial_weights

print("Filter bank size attributes =", filter_bank_size)
print("Initial weights of the conv layer :", conv_initail_weights)





Because conv_layer holds a reference to the input layer, then the
number of input neurons can be accessed.

input_layer = conv_layer.previous_layer
input_shape = input_layer.num_neurons

print("Input shape =", input_shape)





Here is another conv layer where its previous_layer attribute points
to the previously created conv layer and it uses the ReLU activation
function.

conv_layer2 = pygad.cnn.Conv2D(num_filters=2,
                         kernel_size=3,
                         previous_layer=conv_layer,
                         activation_function="relu")





Because conv_layer2 holds a reference to conv_layer in its
previous_layer attribute, then the attributes in conv_layer can
be accessed.

conv_layer = conv_layer2.previous_layer
filter_bank_size = conv_layer.filter_bank_size

print("Filter bank size attributes =", filter_bank_size)





After getting the reference to conv_layer, we can use it to access
the number of input neurons.

conv_layer = conv_layer2.previous_layer
input_layer = conv_layer.previous_layer
input_shape = input_layer.num_neurons

print("Input shape =", input_shape)







pygad.cnn.MaxPooling2D Class

The pygad.cnn.MaxPooling2D class builds a max pooling layer for the
CNN architecture. The constructor of this class accepts the following
parameter:


	pool_size: Size of the window.


	previous_layer: A reference to the previous layer in the CNN
architecture.


	stride=2: A stride that default to 2.




Within the constructor, the accepted parameters are used as instance
attributes. Besides the parameters, some new instance attributes are
created which are:


	layer_input_size


	layer_output_size


	layer_output






pygad.cnn.AveragePooling2D Class

The pygad.cnn.AveragePooling2D class is similar to the
pygad.cnn.MaxPooling2D class except that it applies the max pooling
operation rather than average pooling.



pygad.cnn.Flatten Class

The pygad.cnn.Flatten class implements the flatten layer which
converts the output of the previous layer into a 1D vector. The
constructor accepts only the previous_layer parameter.

The following instance attributes exist:


	previous_layer


	layer_input_size


	layer_output_size


	layer_output






pygad.cnn.ReLU Class

The pygad.cnn.ReLU class implements the ReLU layer which applies the
ReLU activation function to the output of the previous layer.

The constructor accepts only the previous_layer parameter.

The following instance attributes exist:


	previous_layer


	layer_input_size


	layer_output_size


	layer_output






pygad.cnn.Sigmoid Class

The pygad.cnn.Sigmoid class is similar to the pygad.cnn.ReLU
class except that it applies the sigmoid function rather than the ReLU
function.



pygad.cnn.Dense Class

The pygad.cnn.Dense class implement the dense layer. Its constructor
accepts the following parameters:


	num_neurons: Number of neurons in the dense layer.


	previous_layer: A reference to the previous layer.


	activation_function: A string representing the activation
function to be used in this layer. Defaults to "sigmoid".
Currently, the supported activation functions in the dense layer are
"sigmoid", "relu", and softmax.




Within the constructor, the accepted parameters are used as instance
attributes. Besides the parameters, some new instance attributes are
created which are:


	initial_weights: The initial weights for the dense layer.


	trained_weights: The trained weights of the dense layer. This
attribute is initialized by the value in the initial_weights
attribute.


	layer_input_size


	layer_output_size


	layer_output







pygad.cnn.Model Class

An instance of the pygad.cnn.Model class represents a CNN model. The
constructor of this class accepts the following parameters:


	last_layer: A reference to the last layer in the CNN architecture
(i.e. dense layer).


	epochs=10: Number of epochs.


	learning_rate=0.01: Learning rate.




Within the constructor, the accepted parameters are used as instance
attributes. Besides the parameters, a new instance attribute named
network_layers is created which holds a list with references to the
CNN layers. Such a list is returned using the get_layers() method in
the pygad.cnn.Model class.

There are a number of methods in the pygad.cnn.Model class which
serves in training, testing, and retrieving information about the model.
These methods are discussed in the next subsections.


get_layers()

Creates a list of all layers in the CNN model. It accepts no parameters.



train()

Trains the CNN model.

Accepts the following parameters:


	train_inputs: Training data inputs.


	train_outputs: Training data outputs.




This method trains the CNN model according to the number of epochs
specified in the constructor of the pygad.cnn.Model class.

It is important to note that no learning algorithm is used for training
the pygad.cnn. Just the learning rate is used for making some changes
which is better than leaving the weights unchanged.



feed_sample()

Feeds a sample in the CNN layers and returns results of the last layer
in the pygad.cnn.



update_weights()

Updates the CNN weights using the learning rate. It is important to note
that no learning algorithm is used for training the pygad.cnn. Just the
learning rate is used for making some changes which is better than
leaving the weights unchanged.



predict()

Uses the trained CNN for making predictions.

Accepts the following parameter:


	data_inputs: The inputs to predict their label.




It returns a list holding the samples predictions.



summary()

Prints a summary of the CNN architecture.




Supported Activation Functions

The supported activation functions in the convolution layer are:


	Sigmoid: Implemented using the pygad.cnn.sigmoid() function.


	Rectified Linear Unit (ReLU): Implemented using the
pygad.cnn.relu() function.




The dense layer supports these functions besides the softmax
function implemented in the pygad.cnn.softmax() function.



Steps to Build a Neural Network

This section discusses how to use the pygad.cnn module for building
a neural network. The summary of the steps are as follows:


	Reading the Data


	Building the CNN Architecture


	Building Model


	Model Summary


	Training the CNN


	Making Predictions


	Calculating Some Statistics





Reading the Data

Before building the network architecture, the first thing to do is to
prepare the data that will be used for training the network.

In this example, 4 classes of the Fruits360 dataset are used for
preparing the training data. The 4 classes are:


	Apple
Braeburn [https://github.com/ahmedfgad/NumPyANN/tree/master/apple]:
This class’s data is available at
https://github.com/ahmedfgad/NumPyANN/tree/master/apple


	Lemon
Meyer [https://github.com/ahmedfgad/NumPyANN/tree/master/lemon]:
This class’s data is available at
https://github.com/ahmedfgad/NumPyANN/tree/master/lemon


	Mango [https://github.com/ahmedfgad/NumPyANN/tree/master/mango]:
This class’s data is available at
https://github.com/ahmedfgad/NumPyANN/tree/master/mango


	Raspberry [https://github.com/ahmedfgad/NumPyANN/tree/master/raspberry]:
This class’s data is available at
https://github.com/ahmedfgad/NumPyANN/tree/master/raspberry




Just 20 samples from each of the 4 classes are saved into a NumPy array
available in the
dataset_inputs.npy [https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_inputs.npy]
file:
https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_inputs.npy

The shape of this array is (80, 100, 100, 3) where the shape of the
single image is (100, 100, 3).

The
dataset_outputs.npy [https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_outputs.npy]
file
(https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_outputs.npy)
has the class labels for the 4 classes:


	Apple
Braeburn [https://github.com/ahmedfgad/NumPyANN/tree/master/apple]:
Class label is 0


	Lemon
Meyer [https://github.com/ahmedfgad/NumPyANN/tree/master/lemon]:
Class label is 1


	Mango [https://github.com/ahmedfgad/NumPyANN/tree/master/mango]:
Class label is 2


	Raspberry [https://github.com/ahmedfgad/NumPyANN/tree/master/raspberry]:
Class label is 3




Simply, download and reach the 2 files to return the NumPy arrays
according to the next 2 lines:

train_inputs = numpy.load("dataset_inputs.npy")
train_outputs = numpy.load("dataset_outputs.npy")





After the data is prepared, next is to create the network architecture.



Building the Network Architecture

The input layer is created by instantiating the pygad.cnn.Input2D
class according to the next code. A network can only have a single input
layer.

import pygad.cnn
sample_shape = train_inputs.shape[1:]

input_layer = pygad.cnn.Input2D(input_shape=sample_shape)





After the input layer is created, next is to create a number of layers
layers according to the next code. Normally, the last dense layer is
regarded as the output layer. Note that the output layer has a number of
neurons equal to the number of classes in the dataset which is 4.

conv_layer1 = pygad.cnn.Conv2D(num_filters=2,
                               kernel_size=3,
                               previous_layer=input_layer,
                               activation_function=None)
relu_layer1 = pygad.cnn.Sigmoid(previous_layer=conv_layer1)
average_pooling_layer = pygad.cnn.AveragePooling2D(pool_size=2,
                                                   previous_layer=relu_layer1,
                                                   stride=2)

conv_layer2 = pygad.cnn.Conv2D(num_filters=3,
                               kernel_size=3,
                               previous_layer=average_pooling_layer,
                               activation_function=None)
relu_layer2 = pygad.cnn.ReLU(previous_layer=conv_layer2)
max_pooling_layer = pygad.cnn.MaxPooling2D(pool_size=2,
                                           previous_layer=relu_layer2,
                                           stride=2)

conv_layer3 = pygad.cnn.Conv2D(num_filters=1,
                               kernel_size=3,
                               previous_layer=max_pooling_layer,
                               activation_function=None)
relu_layer3 = pygad.cnn.ReLU(previous_layer=conv_layer3)
pooling_layer = pygad.cnn.AveragePooling2D(pool_size=2,
                                           previous_layer=relu_layer3,
                                           stride=2)

flatten_layer = pygad.cnn.Flatten(previous_layer=pooling_layer)
dense_layer1 = pygad.cnn.Dense(num_neurons=100,
                               previous_layer=flatten_layer,
                               activation_function="relu")
dense_layer2 = pygad.cnn.Dense(num_neurons=4,
                               previous_layer=dense_layer1,
                               activation_function="softmax")





After the network architecture is prepared, the next step is to create a
CNN model.



Building Model

The CNN model is created as an instance of the pygad.cnn.Model
class. Here is an example.

model = pygad.cnn.Model(last_layer=dense_layer2,
                        epochs=5,
                        learning_rate=0.01)





After the model is created, a summary of the model architecture can be
printed.



Model Summary

The summary() method in the pygad.cnn.Model class prints a
summary of the CNN model.

model.summary()





----------Network Architecture----------
<class 'pygad.cnn.Conv2D'>
<class 'pygad.cnn.Sigmoid'>
<class 'pygad.cnn.AveragePooling2D'>
<class 'pygad.cnn.Conv2D'>
<class 'pygad.cnn.ReLU'>
<class 'pygad.cnn.MaxPooling2D'>
<class 'pygad.cnn.Conv2D'>
<class 'pygad.cnn.ReLU'>
<class 'pygad.cnn.AveragePooling2D'>
<class 'pygad.cnn.Flatten'>
<class 'pygad.cnn.Dense'>
<class 'pygad.cnn.Dense'>
----------------------------------------







Training the Network

After the model and the data are prepared, then the model can be trained
using the the pygad.cnn.train() method.

model.train(train_inputs=train_inputs,
            train_outputs=train_outputs)





After training the network, the next step is to make predictions.



Making Predictions

The pygad.cnn.predict() method uses the trained network for making
predictions. Here is an example.

predictions = model.predict(data_inputs=train_inputs)





It is not expected to have high accuracy in the predictions because no
training algorithm is used.



Calculating Some Statistics

Based on the predictions the network made, some statistics can be
calculated such as the number of correct and wrong predictions in
addition to the classification accuracy.

num_wrong = numpy.where(predictions != train_outputs)[0]
num_correct = train_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/train_outputs.size)
print(f"Number of correct classifications : {num_correct}.")
print(f"Number of wrong classifications : {num_wrong.size}.")
print(f"Classification accuracy : {accuracy}.")





It is very important to note that it is not expected that the
classification accuracy is high because no training algorithm is used.
Please check the documentation of the pygad.gacnn module for
training the CNN using the genetic algorithm.




Examples

This section gives the complete code of some examples that build neural
networks using pygad.cnn. Each subsection builds a different
network.


Image Classification

This example is discussed in the Steps to Build a Convolutional Neural
Network section and its complete code is listed below.

Remember to either download or create the
dataset_features.npy [https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_features.npy]
and
dataset_outputs.npy [https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_outputs.npy]
files before running this code.

import numpy
import pygad.cnn

"""
Convolutional neural network implementation using NumPy
A tutorial that helps to get started (Building Convolutional Neural Network using NumPy from Scratch) available in these links:
    https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad
    https://towardsdatascience.com/building-convolutional-neural-network-using-numpy-from-scratch-b30aac50e50a
    https://www.kdnuggets.com/2018/04/building-convolutional-neural-network-numpy-scratch.html
It is also translated into Chinese: http://m.aliyun.com/yunqi/articles/585741
"""

train_inputs = numpy.load("dataset_inputs.npy")
train_outputs = numpy.load("dataset_outputs.npy")

sample_shape = train_inputs.shape[1:]
num_classes = 4

input_layer = pygad.cnn.Input2D(input_shape=sample_shape)
conv_layer1 = pygad.cnn.Conv2D(num_filters=2,
                               kernel_size=3,
                               previous_layer=input_layer,
                               activation_function=None)
relu_layer1 = pygad.cnn.Sigmoid(previous_layer=conv_layer1)
average_pooling_layer = pygad.cnn.AveragePooling2D(pool_size=2,
                                                   previous_layer=relu_layer1,
                                                   stride=2)

conv_layer2 = pygad.cnn.Conv2D(num_filters=3,
                               kernel_size=3,
                               previous_layer=average_pooling_layer,
                               activation_function=None)
relu_layer2 = pygad.cnn.ReLU(previous_layer=conv_layer2)
max_pooling_layer = pygad.cnn.MaxPooling2D(pool_size=2,
                                           previous_layer=relu_layer2,
                                           stride=2)

conv_layer3 = pygad.cnn.Conv2D(num_filters=1,
                               kernel_size=3,
                               previous_layer=max_pooling_layer,
                               activation_function=None)
relu_layer3 = pygad.cnn.ReLU(previous_layer=conv_layer3)
pooling_layer = pygad.cnn.AveragePooling2D(pool_size=2,
                                           previous_layer=relu_layer3,
                                           stride=2)

flatten_layer = pygad.cnn.Flatten(previous_layer=pooling_layer)
dense_layer1 = pygad.cnn.Dense(num_neurons=100,
                               previous_layer=flatten_layer,
                               activation_function="relu")
dense_layer2 = pygad.cnn.Dense(num_neurons=num_classes,
                               previous_layer=dense_layer1,
                               activation_function="softmax")

model = pygad.cnn.Model(last_layer=dense_layer2,
                        epochs=1,
                        learning_rate=0.01)

model.summary()

model.train(train_inputs=train_inputs,
            train_outputs=train_outputs)

predictions = model.predict(data_inputs=train_inputs)
print(predictions)

num_wrong = numpy.where(predictions != train_outputs)[0]
num_correct = train_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/train_outputs.size)
print(f"Number of correct classifications : {num_correct}.")
print(f"Number of wrong classifications : {num_wrong.size}.")
print(f"Classification accuracy : {accuracy}.")









            

          

      

      

    

  

    
      
          
            
  
pygad.gacnn Module

This section of the PyGAD’s library documentation discusses the
pygad.gacnn module.

The pygad.gacnn module trains convolutional neural networks using
the genetic algorithm. It makes use of the 2 modules pygad and
pygad.cnn.



pygad.gacnn.GACNN Class

The pygad.gacnn module has a class named pygad.gacnn.GACNN for
training convolutional neural networks (CNNs) using the genetic
algorithm. The constructor, methods, function, and attributes within the
class are discussed in this section.


__init__()

In order to train a CNN using the genetic algorithm, the first thing to
do is to create an instance of the pygad.gacnn.GACNN class.

The pygad.gacnn.GACNN class constructor accepts the following
parameters:


	model: model: An instance of the pygad.cnn.Model class
representing the architecture of all solutions in the population.


	num_solutions: Number of CNNs (i.e. solutions) in the population.
Based on the value passed to this parameter, a number of identical
CNNs are created where their parameters are optimized using the
genetic algorithm.






Instance Attributes

All the parameters in the pygad.gacnn.GACNN class constructor are
used as instance attributes. Besides such attributes, there is an extra
attribute added to the instances from the pygad.gacnn.GACNN class
which is:


	population_networks: A list holding references to all the
solutions (i.e. CNNs) used in the population.






Methods in the GACNN Class

This section discusses the methods available for instances of the
pygad.gacnn.GACNN class.


create_population()

The create_population() method creates the initial population of the
genetic algorithm as a list of CNNs (i.e. solutions). All the networks
are copied from the CNN model passed to constructor of the GACNN class.

The list of networks is assigned to the population_networks
attribute of the instance.



update_population_trained_weights()

The update_population_trained_weights() method updates the
trained_weights attribute of the layers of each network (check the
documentation of the pygad.cnn module) for more information)
according to the weights passed in the population_trained_weights
parameter.

Accepts the following parameters:


	population_trained_weights: A list holding the trained weights of
all networks as matrices. Such matrices are to be assigned to the
trained_weights attribute of all layers of all networks.








Functions in the pygad.gacnn Module

This section discusses the functions in the pygad.gacnn module.


pygad.gacnn.population_as_vectors()

Accepts the population as a list of references to the
pygad.cnn.Model class and returns a list holding all weights of the
layers of each solution (i.e. network) in the population as a vector.

For example, if the population has 6 solutions (i.e. networks), this
function accepts references to such networks and returns a list with 6
vectors, one for each network (i.e. solution). Each vector holds the
weights for all layers for a single network.

Accepts the following parameters:


	population_networks: A list holding references to the
pygad.cnn.Model class of the networks used in the population.




Returns a list holding the weights vectors for all solutions (i.e.
networks).



pygad.gacnn.population_as_matrices()

Accepts the population as both networks and weights vectors and returns
the weights of all layers of each solution (i.e. network) in the
population as a matrix.

For example, if the population has 6 solutions (i.e. networks), this
function returns a list with 6 matrices, one for each network holding
its weights for all layers.

Accepts the following parameters:


	population_networks: A list holding references to the
pygad.cnn.Model class of the networks used in the population.


	population_vectors: A list holding the weights of all networks as
vectors. Such vectors are to be converted into matrices.




Returns a list holding the weights matrices for all solutions (i.e.
networks).




Steps to Build and Train CNN using Genetic Algorithm

The steps to use this project for building and training a neural network
using the genetic algorithm are as follows:


	Prepare the training data.


	Create an instance of the pygad.gacnn.GACNN class.


	Fetch the population weights as vectors.


	Prepare the fitness function.


	Prepare the generation callback function.


	Create an instance of the pygad.GA class.


	Run the created instance of the pygad.GA class.


	Plot the Fitness Values


	Information about the best solution.


	Making predictions using the trained weights.


	Calculating some statistics.




Let’s start covering all of these steps.


Prepare the Training Data

Before building and training neural networks, the training data (input
and output) is to be prepared. The inputs and the outputs of the
training data are NumPy arrays.

The data used in this example is available as 2 files:


	dataset_inputs.npy [https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_inputs.npy]:
Data inputs.
https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_inputs.npy


	dataset_outputs.npy [https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_outputs.npy]:
Class labels.
https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_outputs.npy




The data consists of 4 classes of images. The image shape is
(100, 100, 3) and there are 20 images per class. For more
information about the dataset, check the Reading the Data section of
the pygad.cnn module.

Simply download these 2 files and read them according to the next code.

import numpy

train_inputs = numpy.load("dataset_inputs.npy")
train_outputs = numpy.load("dataset_outputs.npy")





For the output array, each element must be a single number representing
the class label of the sample. The class labels must start at 0. So,
if there are 80 samples, then the shape of the output array is (80).
If there are 5 classes in the data, then the values of all the 200
elements in the output array must range from 0 to 4 inclusive.
Generally, the class labels start from 0 to N-1 where N is
the number of classes.

Note that the project only supports that each sample is assigned to only
one class.



Building the Network Architecture

Here is an example for a CNN architecture.

import pygad.cnn

input_layer = pygad.cnn.Input2D(input_shape=(80, 80, 3))
conv_layer = pygad.cnn.Conv2D(num_filters=2,
                              kernel_size=3,
                              previous_layer=input_layer,
                              activation_function="relu")
average_pooling_layer = pygad.cnn.AveragePooling2D(pool_size=5,
                                                   previous_layer=conv_layer,
                                                   stride=3)

flatten_layer = pygad.cnn.Flatten(previous_layer=average_pooling_layer)
dense_layer = pygad.cnn.Dense(num_neurons=4,
                              previous_layer=flatten_layer,
                              activation_function="softmax")





After the network architecture is prepared, the next step is to create a
CNN model.



Building Model

The CNN model is created as an instance of the pygad.cnn.Model
class. Here is an example.

model = pygad.cnn.Model(last_layer=dense_layer,
                        epochs=5,
                        learning_rate=0.01)





After the model is created, a summary of the model architecture can be
printed.



Model Summary

The summary() method in the pygad.cnn.Model class prints a
summary of the CNN model.

model.summary()





----------Network Architecture----------
<class 'cnn.Conv2D'>
<class 'cnn.AveragePooling2D'>
<class 'cnn.Flatten'>
<class 'cnn.Dense'>
----------------------------------------





The next step is to create an instance of the pygad.gacnn.GACNN
class.



Create an Instance of the pygad.gacnn.GACNN Class

After preparing the input data and building the CNN model, an instance
of the pygad.gacnn.GACNN class is created by passing the appropriate
parameters.

Here is an example where the num_solutions parameter is set to 4
which means the genetic algorithm population will have 6 solutions (i.e.
networks). All of these 6 CNNs will have the same architectures as
specified by the model parameter.

import pygad.gacnn

GACNN_instance = pygad.gacnn.GACNN(model=model,
                                   num_solutions=4)





After creating the instance of the pygad.gacnn.GACNN class, next is
to fetch the weights of the population as a list of vectors.



Fetch the Population Weights as Vectors

For the genetic algorithm, the parameters (i.e. genes) of each solution
are represented as a single vector.

For this task, the weights of each CNN must be available as a single
vector. In other words, the weights of all layers of a CNN must be
grouped into a vector.

To create a list holding the population weights as vectors, one for each
network, the pygad.gacnn.population_as_vectors() function is used.

population_vectors = gacnn.population_as_vectors(population_networks=GACNN_instance.population_networks)





Such population of vectors is used as the initial population.

initial_population = population_vectors.copy()





After preparing the population weights as a set of vectors, next is to
prepare 2 functions which are:


	Fitness function.


	Callback function after each generation.






Prepare the Fitness Function

The PyGAD library works by allowing the users to customize the genetic
algorithm for their own problems. Because the problems differ in how the
fitness values are calculated, then PyGAD allows the user to use a
custom function as a maximization fitness function. This function must
accept 2 positional parameters representing the following:


	The solution.


	The solution index in the population.




The fitness function must return a single number representing the
fitness. The higher the fitness value, the better the solution.

Here is the implementation of the fitness function for training a CNN.

It uses the pygad.cnn.predict() function to predict the class labels
based on the current solution’s weights. The pygad.cnn.predict()
function uses the trained weights available in the trained_weights
attribute of each layer of the network for making predictions.

Based on such predictions, the classification accuracy is calculated.
This accuracy is used as the fitness value of the solution. Finally, the
fitness value is returned.

def fitness_func(ga_instance, solution, sol_idx):
    global GACNN_instance, data_inputs, data_outputs

    predictions = GACNN_instance.population_networks[sol_idx].predict(data_inputs=data_inputs)
    correct_predictions = numpy.where(predictions == data_outputs)[0].size
    solution_fitness = (correct_predictions/data_outputs.size)*100

    return solution_fitness







Prepare the Generation Callback Function

After each generation of the genetic algorithm, the fitness function
will be called to calculate the fitness value of each solution. Within
the fitness function, the pygad.cnn.predict() function is used for
predicting the outputs based on the current solution’s
trained_weights attribute. Thus, it is required that such an
attribute is updated by weights evolved by the genetic algorithm after
each generation.

PyGAD has a parameter accepted by the pygad.GA class constructor
named on_generation. It could be assigned to a function that is
called after each generation. The function must accept a single
parameter representing the instance of the pygad.GA class.

This callback function can be used to update the trained_weights
attribute of layers of each network in the population.

Here is the implementation for a function that updates the
trained_weights attribute of the layers of the population networks.

It works by converting the current population from the vector form to
the matric form using the pygad.gacnn.population_as_matrices()
function. It accepts the population as vectors and returns it as
matrices.

The population matrices are then passed to the
update_population_trained_weights() method in the pygad.gacnn
module to update the trained_weights attribute of all layers for all
solutions within the population.

def callback_generation(ga_instance):
    global GACNN_instance, last_fitness

    population_matrices = gacnn.population_as_matrices(population_networks=GACNN_instance.population_networks, population_vectors=ga_instance.population)
    GACNN_instance.update_population_trained_weights(population_trained_weights=population_matrices)

    print(f"Generation = {ga_instance.generations_completed}")





After preparing the fitness and callback function, next is to create an
instance of the pygad.GA class.



Create an Instance of the pygad.GA Class

Once the parameters of the genetic algorithm are prepared, an instance
of the pygad.GA class can be created. Here is an example where the
number of generations is 10.

import pygad

num_parents_mating = 4

num_generations = 10

mutation_percent_genes = 5

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       mutation_percent_genes=mutation_percent_genes,
                       on_generation=callback_generation)





The last step for training the neural networks using the genetic
algorithm is calling the run() method.



Run the Created Instance of the pygad.GA Class

By calling the run() method from the pygad.GA instance, the
genetic algorithm will iterate through the number of generations
specified in its num_generations parameter.

ga_instance.run()







Plot the Fitness Values

After the run() method completes, the plot_fitness() method can
be called to show how the fitness values evolve by generation.

ga_instance.plot_fitness()





[image: ]


Information about the Best Solution

The following information about the best solution in the last population
is returned using the best_solution() method in the pygad.GA
class.


	Solution


	Fitness value of the solution


	Index of the solution within the population




Here is how such information is returned.

solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")





...
Fitness value of the best solution = 83.75
Index of the best solution : 0
Best fitness value reached after 4 generations.







Making Predictions using the Trained Weights

The pygad.cnn.predict() function can be used to make predictions
using the trained network. As printed, the network is able to predict
the labels correctly.

predictions = pygad.cnn.predict(last_layer=GANN_instance.population_networks[solution_idx], data_inputs=data_inputs)
print(f"Predictions of the trained network : {predictions}")







Calculating Some Statistics

Based on the predictions the network made, some statistics can be
calculated such as the number of correct and wrong predictions in
addition to the classification accuracy.

num_wrong = numpy.where(predictions != data_outputs)[0]
num_correct = data_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/data_outputs.size)
print(f"Number of correct classifications : {num_correct}.")
print(f"Number of wrong classifications : {num_wrong.size}.")
print(f"Classification accuracy : {accuracy}.")





Number of correct classifications : 67.
Number of wrong classifications : 13.
Classification accuracy : 83.75.








Examples

This section gives the complete code of some examples that build and
train neural networks using the genetic algorithm. Each subsection
builds a different network.


Image Classification

This example is discussed in the Steps to Build and Train CNN using
Genetic Algorithm section that builds the an image classifier. Its
complete code is listed below.

import numpy
import pygad.cnn
import pygad.gacnn
import pygad

"""
Convolutional neural network implementation using NumPy
A tutorial that helps to get started (Building Convolutional Neural Network using NumPy from Scratch) available in these links:
    https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad
    https://towardsdatascience.com/building-convolutional-neural-network-using-numpy-from-scratch-b30aac50e50a
    https://www.kdnuggets.com/2018/04/building-convolutional-neural-network-numpy-scratch.html
It is also translated into Chinese: http://m.aliyun.com/yunqi/articles/585741
"""

def fitness_func(ga_instance, solution, sol_idx):
    global GACNN_instance, data_inputs, data_outputs

    predictions = GACNN_instance.population_networks[sol_idx].predict(data_inputs=data_inputs)
    correct_predictions = numpy.where(predictions == data_outputs)[0].size
    solution_fitness = (correct_predictions/data_outputs.size)*100

    return solution_fitness

def callback_generation(ga_instance):
    global GACNN_instance, last_fitness

    population_matrices = pygad.gacnn.population_as_matrices(population_networks=GACNN_instance.population_networks,
                                                       population_vectors=ga_instance.population)

    GACNN_instance.update_population_trained_weights(population_trained_weights=population_matrices)

    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solutions_fitness}")

data_inputs = numpy.load("dataset_inputs.npy")
data_outputs = numpy.load("dataset_outputs.npy")

sample_shape = data_inputs.shape[1:]
num_classes = 4

data_inputs = data_inputs
data_outputs = data_outputs

input_layer = pygad.cnn.Input2D(input_shape=sample_shape)
conv_layer1 = pygad.cnn.Conv2D(num_filters=2,
                               kernel_size=3,
                               previous_layer=input_layer,
                               activation_function="relu")
average_pooling_layer = pygad.cnn.AveragePooling2D(pool_size=5,
                                                   previous_layer=conv_layer1,
                                                   stride=3)

flatten_layer = pygad.cnn.Flatten(previous_layer=average_pooling_layer)
dense_layer2 = pygad.cnn.Dense(num_neurons=num_classes,
                               previous_layer=flatten_layer,
                               activation_function="softmax")

model = pygad.cnn.Model(last_layer=dense_layer2,
                        epochs=1,
                        learning_rate=0.01)

model.summary()


GACNN_instance = pygad.gacnn.GACNN(model=model,
                             num_solutions=4)

# GACNN_instance.update_population_trained_weights(population_trained_weights=population_matrices)

# population does not hold the numerical weights of the network instead it holds a list of references to each last layer of each network (i.e. solution) in the population. A solution or a network can be used interchangeably.
# If there is a population with 3 solutions (i.e. networks), then the population is a list with 3 elements. Each element is a reference to the last layer of each network. Using such a reference, all details of the network can be accessed.
population_vectors = pygad.gacnn.population_as_vectors(population_networks=GACNN_instance.population_networks)

# To prepare the initial population, there are 2 ways:
# 1) Prepare it yourself and pass it to the initial_population parameter. This way is useful when the user wants to start the genetic algorithm with a custom initial population.
# 2) Assign valid integer values to the sol_per_pop and num_genes parameters. If the initial_population parameter exists, then the sol_per_pop and num_genes parameters are useless.
initial_population = population_vectors.copy()

num_parents_mating = 2 # Number of solutions to be selected as parents in the mating pool.

num_generations = 10 # Number of generations.

mutation_percent_genes = 0.1 # Percentage of genes to mutate. This parameter has no action if the parameter mutation_num_genes exists.

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       mutation_percent_genes=mutation_percent_genes,
                       on_generation=callback_generation)

ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness()

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

if ga_instance.best_solution_generation != -1:
    print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")

# Predicting the outputs of the data using the best solution.
predictions = GACNN_instance.population_networks[solution_idx].predict(data_inputs=data_inputs)
print(f"Predictions of the trained network : {predictions}")

# Calculating some statistics
num_wrong = numpy.where(predictions != data_outputs)[0]
num_correct = data_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/data_outputs.size)
print(f"Number of correct classifications : {num_correct}.")
print(f"Number of wrong classifications : {num_wrong.size}.")
print(f"Classification accuracy : {accuracy}.")









            

          

      

      

    

  

    
      
          
            
  
pygad.kerasga Module

This section of the PyGAD’s library documentation discusses the
pygad.kerasga [https://pygad.readthedocs.io/en/latest/kerasga.html]
module.

The pygad.kerarsga module has helper a class and 2 functions to
train Keras models using the genetic algorithm (PyGAD). The Keras model
can be built either using the Sequential
Model [https://keras.io/guides/sequential_model] or the Functional
API [https://keras.io/guides/functional_api].

The contents of this module are:


	KerasGA: A class for creating an initial population of all
parameters in the Keras model.


	model_weights_as_vector(): A function to reshape the Keras model
weights to a single vector.


	model_weights_as_matrix(): A function to restore the Keras model
weights from a vector.


	predict(): A function to make predictions based on the Keras
model and a solution.




More details are given in the next sections.



Steps Summary

The summary of the steps used to train a Keras model using PyGAD is as
follows:


	Create a Keras model.


	Create an instance of the pygad.kerasga.KerasGA class.


	Prepare the training data.


	Build the fitness function.


	Create an instance of the pygad.GA class.


	Run the genetic algorithm.






Create Keras Model

Before discussing training a Keras model using PyGAD, the first thing to
do is to create the Keras model.

According to the Keras library
documentation [https://keras.io/api/models], there are 3 ways to
build a Keras model:


	Sequential Model [https://keras.io/guides/sequential_model]


	Functional API [https://keras.io/guides/functional_api]


	Model Subclassing [https://keras.io/guides/model_subclassing]




PyGAD supports training the models created either using the Sequential
Model or the Functional API.

Here is an example of a model created using the Sequential Model.

import tensorflow.keras

input_layer  = tensorflow.keras.layers.Input(3)
dense_layer1 = tensorflow.keras.layers.Dense(5, activation="relu")
output_layer = tensorflow.keras.layers.Dense(1, activation="linear")

model = tensorflow.keras.Sequential()
model.add(input_layer)
model.add(dense_layer1)
model.add(output_layer)





This is the same model created using the Functional API.

input_layer  = tensorflow.keras.layers.Input(3)
dense_layer1 = tensorflow.keras.layers.Dense(5, activation="relu")(input_layer)
output_layer = tensorflow.keras.layers.Dense(1, activation="linear")(dense_layer1)

model = tensorflow.keras.Model(inputs=input_layer, outputs=output_layer)





Feel free to add the layers of your choice.



pygad.kerasga.KerasGA Class

The pygad.kerasga module has a class named KerasGA for creating
an initial population for the genetic algorithm based on a Keras model.
The constructor, methods, and attributes within the class are discussed
in this section.


__init__()

The pygad.kerasga.KerasGA class constructor accepts the following
parameters:


	model: An instance of the Keras model.


	num_solutions: Number of solutions in the population. Each
solution has different parameters of the model.






Instance Attributes

All parameters in the pygad.kerasga.KerasGA class constructor are
used as instance attributes in addition to adding a new attribute called
population_weights.

Here is a list of all instance attributes:


	model


	num_solutions


	population_weights: A nested list holding the weights of all
solutions in the population.






Methods in the KerasGA Class

This section discusses the methods available for instances of the
pygad.kerasga.KerasGA class.


create_population()

The create_population() method creates the initial population of the
genetic algorithm as a list of solutions where each solution represents
different model parameters. The list of networks is assigned to the
population_weights attribute of the instance.





Functions in the pygad.kerasga Module

This section discusses the functions in the pygad.kerasga module.


pygad.kerasga.model_weights_as_vector()

The model_weights_as_vector() function accepts a single parameter
named model representing the Keras model. It returns a vector
holding all model weights. The reason for representing the model weights
as a vector is that the genetic algorithm expects all parameters of any
solution to be in a 1D vector form.

This function filters the layers based on the trainable attribute to
see whether the layer weights are trained or not. For each layer, if its
trainable=False, then its weights will not be evolved using the
genetic algorithm. Otherwise, it will be represented in the chromosome
and evolved.

The function accepts the following parameters:


	model: The Keras model.




It returns a 1D vector holding the model weights.



pygad.kerasga.model_weights_as_matrix()

The model_weights_as_matrix() function accepts the following
parameters:


	model: The Keras model.


	weights_vector: The model parameters as a vector.




It returns the restored model weights after reshaping the vector.



pygad.kerasga.predict()

The predict() function makes a prediction based on a solution. It
accepts the following parameters:


	model: The Keras model.


	solution: The solution evolved.


	data: The test data inputs.


	batch_size=None: The batch size (i.e. number of samples per step
or batch).


	verbose=None: Verbosity mode.


	steps=None: The total number of steps (batches of samples).




Check documentation of the Keras
Model.predict() [https://keras.io/api/models/model_training_apis]
method for more information about the batch_size, verbose, and
steps parameters.

It returns the predictions of the data samples.




Examples

This section gives the complete code of some examples that build and
train a Keras model using PyGAD. Each subsection builds a different
network.


Example 1: Regression Example

The next code builds a simple Keras model for regression. The next
subsections discuss each part in the code.

import tensorflow.keras
import pygad.kerasga
import numpy
import pygad

def fitness_func(ga_instance, solution, sol_idx):
    global data_inputs, data_outputs, keras_ga, model

    predictions = pygad.kerasga.predict(model=model,
                                        solution=solution,
                                        data=data_inputs)

    mae = tensorflow.keras.losses.MeanAbsoluteError()
    abs_error = mae(data_outputs, predictions).numpy() + 0.00000001
    solution_fitness = 1.0/abs_error

    return solution_fitness

def on_generation(ga_instance):
    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")

input_layer  = tensorflow.keras.layers.Input(3)
dense_layer1 = tensorflow.keras.layers.Dense(5, activation="relu")(input_layer)
output_layer = tensorflow.keras.layers.Dense(1, activation="linear")(dense_layer1)

model = tensorflow.keras.Model(inputs=input_layer, outputs=output_layer)

keras_ga = pygad.kerasga.KerasGA(model=model,
                                 num_solutions=10)

# Data inputs
data_inputs = numpy.array([[0.02, 0.1, 0.15],
                           [0.7, 0.6, 0.8],
                           [1.5, 1.2, 1.7],
                           [3.2, 2.9, 3.1]])

# Data outputs
data_outputs = numpy.array([[0.1],
                            [0.6],
                            [1.3],
                            [2.5]])

# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
num_generations = 250 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = keras_ga.population_weights # Initial population of network weights

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)

ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness(title="PyGAD & Keras - Iteration vs. Fitness", linewidth=4)

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

# Make prediction based on the best solution.
predictions = pygad.kerasga.predict(model=model,
                                    solution=solution,
                                    data=data_inputs)
print(f"Predictions : \n{predictions}")

mae = tensorflow.keras.losses.MeanAbsoluteError()
abs_error = mae(data_outputs, predictions).numpy()
print(f"Absolute Error : {abs_error}")






Create a Keras Model

According to the steps mentioned previously, the first step is to create
a Keras model. Here is the code that builds the model using the
Functional API.

import tensorflow.keras

input_layer  = tensorflow.keras.layers.Input(3)
dense_layer1 = tensorflow.keras.layers.Dense(5, activation="relu")(input_layer)
output_layer = tensorflow.keras.layers.Dense(1, activation="linear")(dense_layer1)

model = tensorflow.keras.Model(inputs=input_layer, outputs=output_layer)





The model can also be build using the Keras Sequential Model API.

input_layer  = tensorflow.keras.layers.Input(3)
dense_layer1 = tensorflow.keras.layers.Dense(5, activation="relu")
output_layer = tensorflow.keras.layers.Dense(1, activation="linear")

model = tensorflow.keras.Sequential()
model.add(input_layer)
model.add(dense_layer1)
model.add(output_layer)







Create an Instance of the pygad.kerasga.KerasGA Class

The second step is to create an instance of the
pygad.kerasga.KerasGA class. There are 10 solutions per population.
Change this number according to your needs.

import pygad.kerasga

keras_ga = pygad.kerasga.KerasGA(model=model,
                                 num_solutions=10)







Prepare the Training Data

The third step is to prepare the training data inputs and outputs. Here
is an example where there are 4 samples. Each sample has 3 inputs and 1
output.

import numpy

# Data inputs
data_inputs = numpy.array([[0.02, 0.1, 0.15],
                           [0.7, 0.6, 0.8],
                           [1.5, 1.2, 1.7],
                           [3.2, 2.9, 3.1]])

# Data outputs
data_outputs = numpy.array([[0.1],
                            [0.6],
                            [1.3],
                            [2.5]])







Build the Fitness Function

The fourth step is to build the fitness function. This function must
accept 2 parameters representing the solution and its index within the
population.

The next fitness function returns the model predictions based on the
current solution using the predict() function. Then, it calculates
the mean absolute error (MAE) of the Keras model based on the parameters
in the solution. The reciprocal of the MAE is used as the fitness value.
Feel free to use any other loss function to calculate the fitness value.

def fitness_func(ga_instance, solution, sol_idx):
    global data_inputs, data_outputs, keras_ga, model

    predictions = pygad.kerasga.predict(model=model,
                                        solution=solution,
                                        data=data_inputs)

    mae = tensorflow.keras.losses.MeanAbsoluteError()
    abs_error = mae(data_outputs, predictions).numpy() + 0.00000001
    solution_fitness = 1.0/abs_error

    return solution_fitness







Create an Instance of the pygad.GA Class

The fifth step is to instantiate the pygad.GA class. Note how the
initial_population parameter is assigned to the initial weights of
the Keras models.

For more information, please check the parameters this class
accepts [https://pygad.readthedocs.io/en/latest/pygad.html#init].

# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
num_generations = 250 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = keras_ga.population_weights # Initial population of network weights

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)







Run the Genetic Algorithm

The sixth and last step is to run the genetic algorithm by calling the
run() method.

ga_instance.run()





After the PyGAD completes its execution, then there is a figure that
shows how the fitness value changes by generation. Call the
plot_fitness() method to show the figure.

ga_instance.plot_fitness(title="PyGAD & Keras - Iteration vs. Fitness", linewidth=4)





Here is the figure.
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To get information about the best solution found by PyGAD, use the
best_solution() method.

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")





Fitness value of the best solution = 72.77768757825352
Index of the best solution : 0





The next code makes prediction using the predict() function to
return the model predictions based on the best solution.

# Fetch the parameters of the best solution.
predictions = pygad.kerasga.predict(model=model,
                                    solution=solution,
                                    data=data_inputs)
print(f"Predictions : \n{predictions}")





Predictions :
[[0.09935353]
 [0.63082725]
 [1.2765523 ]
 [2.4999595 ]]





The next code measures the trained model error.

mae = tensorflow.keras.losses.MeanAbsoluteError()
abs_error = mae(data_outputs, predictions).numpy()
print(f"Absolute Error : {abs_error}")





Absolute Error :  0.013740465








Example 2: XOR Binary Classification

The next code creates a Keras model to build the XOR binary
classification problem. Let’s highlight the changes compared to the
previous example.

import tensorflow.keras
import pygad.kerasga
import numpy
import pygad

def fitness_func(ga_instance, solution, sol_idx):
    global data_inputs, data_outputs, keras_ga, model

    predictions = pygad.kerasga.predict(model=model,
                                        solution=solution,
                                        data=data_inputs)

    bce = tensorflow.keras.losses.BinaryCrossentropy()
    solution_fitness = 1.0 / (bce(data_outputs, predictions).numpy() + 0.00000001)

    return solution_fitness

def on_generation(ga_instance):
    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")

# Build the keras model using the functional API.
input_layer  = tensorflow.keras.layers.Input(2)
dense_layer = tensorflow.keras.layers.Dense(4, activation="relu")(input_layer)
output_layer = tensorflow.keras.layers.Dense(2, activation="softmax")(dense_layer)

model = tensorflow.keras.Model(inputs=input_layer, outputs=output_layer)

# Create an instance of the pygad.kerasga.KerasGA class to build the initial population.
keras_ga = pygad.kerasga.KerasGA(model=model,
                                 num_solutions=10)

# XOR problem inputs
data_inputs = numpy.array([[0, 0],
                           [0, 1],
                           [1, 0],
                           [1, 1]])

# XOR problem outputs
data_outputs = numpy.array([[1, 0],
                            [0, 1],
                            [0, 1],
                            [1, 0]])

# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
num_generations = 250 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = keras_ga.population_weights # Initial population of network weights.

# Create an instance of the pygad.GA class
ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)

# Start the genetic algorithm evolution.
ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness(title="PyGAD & Keras - Iteration vs. Fitness", linewidth=4)

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

# Make predictions based on the best solution.
predictions = pygad.kerasga.predict(model=model,
                                    solution=solution,
                                    data=data_inputs)
print(f"Predictions : \n{predictions}")

# Calculate the binary crossentropy for the trained model.
bce = tensorflow.keras.losses.BinaryCrossentropy()
print("Binary Crossentropy : ", bce(data_outputs, predictions).numpy())

# Calculate the classification accuracy for the trained model.
ba = tensorflow.keras.metrics.BinaryAccuracy()
ba.update_state(data_outputs, predictions)
accuracy = ba.result().numpy()
print(f"Accuracy : {accuracy}")





Compared to the previous regression example, here are the changes:


	The Keras model is changed according to the nature of the problem.
Now, it has 2 inputs and 2 outputs with an in-between hidden layer of
4 neurons.




# Build the keras model using the functional API.
input_layer  = tensorflow.keras.layers.Input(2)
dense_layer = tensorflow.keras.layers.Dense(4, activation="relu")(input_layer)
output_layer = tensorflow.keras.layers.Dense(2, activation="softmax")(dense_layer)

model = tensorflow.keras.Model(inputs=input_layer, outputs=output_layer)






	The train data is changed. Note that the output of each sample is a
1D vector of 2 values, 1 for each class.




# XOR problem inputs
data_inputs = numpy.array([[0, 0],
                           [0, 1],
                           [1, 0],
                           [1, 1]])

# XOR problem outputs
data_outputs = numpy.array([[1, 0],
                            [0, 1],
                            [0, 1],
                            [1, 0]])






	The fitness value is calculated based on the binary cross entropy.




bce = tensorflow.keras.losses.BinaryCrossentropy()
solution_fitness = 1.0 / (bce(data_outputs, predictions).numpy() + 0.00000001)





After the previous code completes, the next figure shows how the fitness
value change by generation.
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Here is some information about the trained model. Its fitness value is
739.24, loss is 0.0013527311 and accuracy is 100%.

Fitness value of the best solution = 739.2397344644013
Index of the best solution : 7

Predictions :
[[9.9694413e-01 3.0558957e-03]
 [5.0176249e-04 9.9949825e-01]
 [1.8470541e-03 9.9815291e-01]
 [9.9999976e-01 2.0538971e-07]]

Binary Crossentropy :  0.0013527311

Accuracy :  1.0







Example 3: Image Multi-Class Classification (Dense Layers)

Here is the code.

import tensorflow.keras
import pygad.kerasga
import numpy
import pygad

def fitness_func(ga_instance, solution, sol_idx):
    global data_inputs, data_outputs, keras_ga, model

    predictions = pygad.kerasga.predict(model=model,
                                        solution=solution,
                                        data=data_inputs)

    cce = tensorflow.keras.losses.CategoricalCrossentropy()
    solution_fitness = 1.0 / (cce(data_outputs, predictions).numpy() + 0.00000001)

    return solution_fitness

def on_generation(ga_instance):
    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")

# Build the keras model using the functional API.
input_layer  = tensorflow.keras.layers.Input(360)
dense_layer = tensorflow.keras.layers.Dense(50, activation="relu")(input_layer)
output_layer = tensorflow.keras.layers.Dense(4, activation="softmax")(dense_layer)

model = tensorflow.keras.Model(inputs=input_layer, outputs=output_layer)

# Create an instance of the pygad.kerasga.KerasGA class to build the initial population.
keras_ga = pygad.kerasga.KerasGA(model=model,
                                   num_solutions=10)

# Data inputs
data_inputs = numpy.load("../data/dataset_features.npy")

# Data outputs
data_outputs = numpy.load("../data/outputs.npy")
data_outputs = tensorflow.keras.utils.to_categorical(data_outputs)

# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
num_generations = 100 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = keras_ga.population_weights # Initial population of network weights.

# Create an instance of the pygad.GA class
ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)

# Start the genetic algorithm evolution.
ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness(title="PyGAD & Keras - Iteration vs. Fitness", linewidth=4)

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

# Make predictions based on the best solution.
predictions = pygad.kerasga.predict(model=model,
                                    solution=solution,
                                    data=data_inputs)
# print(f"Predictions : \n{predictions}")

# Calculate the categorical crossentropy for the trained model.
cce = tensorflow.keras.losses.CategoricalCrossentropy()
print(f"Categorical Crossentropy : {cce(data_outputs, predictions).numpy()}")

# Calculate the classification accuracy for the trained model.
ca = tensorflow.keras.metrics.CategoricalAccuracy()
ca.update_state(data_outputs, predictions)
accuracy = ca.result().numpy()
print(f"Accuracy : {accuracy}")





Compared to the previous binary classification example, this example has
multiple classes (4) and thus the loss is measured using categorical
cross entropy.

cce = tensorflow.keras.losses.CategoricalCrossentropy()
solution_fitness = 1.0 / (cce(data_outputs, predictions).numpy() + 0.00000001)






Prepare the Training Data

Before building and training neural networks, the training data (input
and output) needs to be prepared. The inputs and the outputs of the
training data are NumPy arrays.

The data used in this example is available as 2 files:


	dataset_features.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy]:
Data inputs.
https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy


	outputs.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy]:
Class labels.
https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy




The data consists of 4 classes of images. The image shape is
(100, 100, 3). The number of training samples is 1962. The feature
vector extracted from each image has a length 360.

Simply download these 2 files and read them according to the next code.
Note that the class labels are one-hot encoded using the
tensorflow.keras.utils.to_categorical() function.

import numpy

data_inputs = numpy.load("../data/dataset_features.npy")

data_outputs = numpy.load("../data/outputs.npy")
data_outputs = tensorflow.keras.utils.to_categorical(data_outputs)





The next figure shows how the fitness value changes.
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Here are some statistics about the trained model.

Fitness value of the best solution = 4.197464252185969
Index of the best solution : 0
Categorical Crossentropy :  0.23823906
Accuracy :  0.9852192








Example 4: Image Multi-Class Classification (Conv Layers)

Compared to the previous example that uses only dense layers, this
example uses convolutional layers to classify the same dataset.

Here is the complete code.

import tensorflow.keras
import pygad.kerasga
import numpy
import pygad

def fitness_func(ga_instance, solution, sol_idx):
    global data_inputs, data_outputs, keras_ga, model

    predictions = pygad.kerasga.predict(model=model,
                                        solution=solution,
                                        data=data_inputs)

    cce = tensorflow.keras.losses.CategoricalCrossentropy()
    solution_fitness = 1.0 / (cce(data_outputs, predictions).numpy() + 0.00000001)

    return solution_fitness

def on_generation(ga_instance):
    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")

# Build the keras model using the functional API.
input_layer = tensorflow.keras.layers.Input(shape=(100, 100, 3))
conv_layer1 = tensorflow.keras.layers.Conv2D(filters=5,
                                             kernel_size=7,
                                             activation="relu")(input_layer)
max_pool1 = tensorflow.keras.layers.MaxPooling2D(pool_size=(5,5),
                                                 strides=5)(conv_layer1)
conv_layer2 = tensorflow.keras.layers.Conv2D(filters=3,
                                             kernel_size=3,
                                             activation="relu")(max_pool1)
flatten_layer  = tensorflow.keras.layers.Flatten()(conv_layer2)
dense_layer = tensorflow.keras.layers.Dense(15, activation="relu")(flatten_layer)
output_layer = tensorflow.keras.layers.Dense(4, activation="softmax")(dense_layer)

model = tensorflow.keras.Model(inputs=input_layer, outputs=output_layer)

# Create an instance of the pygad.kerasga.KerasGA class to build the initial population.
keras_ga = pygad.kerasga.KerasGA(model=model,
                                 num_solutions=10)

# Data inputs
data_inputs = numpy.load("../data/dataset_inputs.npy")

# Data outputs
data_outputs = numpy.load("../data/dataset_outputs.npy")
data_outputs = tensorflow.keras.utils.to_categorical(data_outputs)

# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
num_generations = 200 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = keras_ga.population_weights # Initial population of network weights.

# Create an instance of the pygad.GA class
ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)

# Start the genetic algorithm evolution.
ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness(title="PyGAD & Keras - Iteration vs. Fitness", linewidth=4)

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

# Make predictions based on the best solution.
predictions = pygad.kerasga.predict(model=model,
                                    solution=solution,
                                    data=data_inputs)
# print(f"Predictions : \n{predictions}")

# Calculate the categorical crossentropy for the trained model.
cce = tensorflow.keras.losses.CategoricalCrossentropy()
print(f"Categorical Crossentropy : {cce(data_outputs, predictions).numpy()}")

# Calculate the classification accuracy for the trained model.
ca = tensorflow.keras.metrics.CategoricalAccuracy()
ca.update_state(data_outputs, predictions)
accuracy = ca.result().numpy()
print(f"Accuracy : {accuracy}")





Compared to the previous example, the only change is that the
architecture uses convolutional and max-pooling layers. The shape of
each input sample is 100x100x3.

# Build the keras model using the functional API.
input_layer = tensorflow.keras.layers.Input(shape=(100, 100, 3))
conv_layer1 = tensorflow.keras.layers.Conv2D(filters=5,
                                             kernel_size=7,
                                             activation="relu")(input_layer)
max_pool1 = tensorflow.keras.layers.MaxPooling2D(pool_size=(5,5),
                                                 strides=5)(conv_layer1)
conv_layer2 = tensorflow.keras.layers.Conv2D(filters=3,
                                             kernel_size=3,
                                             activation="relu")(max_pool1)
flatten_layer  = tensorflow.keras.layers.Flatten()(conv_layer2)
dense_layer = tensorflow.keras.layers.Dense(15, activation="relu")(flatten_layer)
output_layer = tensorflow.keras.layers.Dense(4, activation="softmax")(dense_layer)

model = tensorflow.keras.Model(inputs=input_layer, outputs=output_layer)






Prepare the Training Data

The data used in this example is available as 2 files:


	dataset_inputs.npy [https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_inputs.npy]:
Data inputs.
https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_inputs.npy


	dataset_outputs.npy [https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_outputs.npy]:
Class labels.
https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_outputs.npy




The data consists of 4 classes of images. The image shape is
(100, 100, 3) and there are 20 images per class for a total of 80
training samples. For more information about the dataset, check the
Reading the
Data [https://pygad.readthedocs.io/en/latest/cnn.html#reading-the-data]
section of the pygad.cnn module.

Simply download these 2 files and read them according to the next code.
Note that the class labels are one-hot encoded using the
tensorflow.keras.utils.to_categorical() function.

import numpy

data_inputs = numpy.load("../data/dataset_inputs.npy")

data_outputs = numpy.load("../data/dataset_outputs.npy")
data_outputs = tensorflow.keras.utils.to_categorical(data_outputs)





The next figure shows how the fitness value changes.
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Here are some statistics about the trained model. The model accuracy is
75% after the 200 generations. Note that just running the code again may
give different results.

Fitness value of the best solution = 2.7462310258668805
Index of the best solution : 0
Categorical Crossentropy :  0.3641354
Accuracy :  0.75





To improve the model performance, you can do the following:


	Add more layers


	Modify the existing layers.


	Use different parameters for the layers.


	Use different parameters for the genetic algorithm (e.g. number of
solution, number of generations, etc)







Example 5: Image Classification using Data Generator

This example uses the image data generator
tensorflow.keras.preprocessing.image.ImageDataGenerator to feed data
to the model. Instead of reading all the data in the memory, the data
generator generates the data needed by the model and only save it in the
memory instead of saving all the data. This frees the memory but adds
more computational time.

import tensorflow as tf
import tensorflow.keras
import pygad.kerasga
import pygad

def fitness_func(ga_instanse, solution, sol_idx):
    global train_generator, data_outputs, keras_ga, model

    predictions = pygad.kerasga.predict(model=model,
                                        solution=solution,
                                        data=train_generator)

    cce = tensorflow.keras.losses.CategoricalCrossentropy()
    solution_fitness = 1.0 / (cce(data_outputs, predictions).numpy() + 0.00000001)

    return solution_fitness

def on_generation(ga_instance):
    print("Generation = {ga_instance.generations_completed}")
    print("Fitness    = {ga_instance.best_solution(ga_instance.last_generation_fitness)[1]}")

# The dataset path.
dataset_path = r'../data/Skin_Cancer_Dataset'

num_classes = 2
img_size = 224

# Create a simple CNN. This does not gurantee high classification accuracy.
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Input(shape=(img_size, img_size, 3)))
model.add(tf.keras.layers.Conv2D(32, (3,3), activation="relu", padding="same"))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dropout(rate=0.2))
model.add(tf.keras.layers.Dense(num_classes, activation="softmax"))

# Create an instance of the pygad.kerasga.KerasGA class to build the initial population.
keras_ga = pygad.kerasga.KerasGA(model=model,
                                 num_solutions=10)

data_generator = tf.keras.preprocessing.image.ImageDataGenerator()
train_generator = data_generator.flow_from_directory(dataset_path,
                                                     class_mode='categorical',
                                                     target_size=(224, 224),
                                                     batch_size=32,
                                                     shuffle=False)
# train_generator.class_indices
data_outputs = tf.keras.utils.to_categorical(train_generator.labels)

# Check the documentation for more information about the parameters: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
initial_population = keras_ga.population_weights # Initial population of network weights.

# Create an instance of the pygad.GA class
ga_instance = pygad.GA(num_generations=10,
                       num_parents_mating=5,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)

# Start the genetic algorithm evolution.
ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness(title="PyGAD & Keras - Iteration vs. Fitness", linewidth=4)

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution(ga_instance.last_generation_fitness)
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

predictions = pygad.kerasga.predict(model=model,
                                    solution=solution,
                                    data=train_generator)
# print(f"Predictions : \n{predictions}")

# Calculate the categorical crossentropy for the trained model.
cce = tensorflow.keras.losses.CategoricalCrossentropy()
print(f"Categorical Crossentropy : {cce(data_outputs, predictions).numpy()}")

# Calculate the classification accuracy for the trained model.
ca = tensorflow.keras.metrics.CategoricalAccuracy()
ca.update_state(data_outputs, predictions)
accuracy = ca.result().numpy()
print(f"Accuracy : {accuracy}")









            

          

      

      

    

  

    
      
          
            
  
pygad.torchga Module

This section of the PyGAD’s library documentation discusses the
pygad.torchga module.

The pygad.torchga module has a helper class and 2 functions to train
PyTorch models using the genetic algorithm (PyGAD).

The contents of this module are:


	TorchGA: A class for creating an initial population of all
parameters in the PyTorch model.


	model_weights_as_vector(): A function to reshape the PyTorch
model weights to a single vector.


	model_weights_as_dict(): A function to restore the PyTorch model
weights from a vector.


	predict(): A function to make predictions based on the PyTorch
model and a solution.




More details are given in the next sections.



Steps Summary

The summary of the steps used to train a PyTorch model using PyGAD is as
follows:


	Create a PyTorch model.


	Create an instance of the pygad.torchga.TorchGA class.


	Prepare the training data.


	Build the fitness function.


	Create an instance of the pygad.GA class.


	Run the genetic algorithm.






Create PyTorch Model

Before discussing training a PyTorch model using PyGAD, the first thing
to do is to create the PyTorch model. To get started, please check the
PyTorch library
documentation [https://pytorch.org/docs/stable/index.html].

Here is an example of a PyTorch model.

import torch

input_layer = torch.nn.Linear(3, 5)
relu_layer = torch.nn.ReLU()
output_layer = torch.nn.Linear(5, 1)

model = torch.nn.Sequential(input_layer,
                            relu_layer,
                            output_layer)





Feel free to add the layers of your choice.



pygad.torchga.TorchGA Class

The pygad.torchga module has a class named TorchGA for creating
an initial population for the genetic algorithm based on a PyTorch
model. The constructor, methods, and attributes within the class are
discussed in this section.


__init__()

The pygad.torchga.TorchGA class constructor accepts the following
parameters:


	model: An instance of the PyTorch model.


	num_solutions: Number of solutions in the population. Each
solution has different parameters of the model.






Instance Attributes

All parameters in the pygad.torchga.TorchGA class constructor are
used as instance attributes in addition to adding a new attribute called
population_weights.

Here is a list of all instance attributes:


	model


	num_solutions


	population_weights: A nested list holding the weights of all
solutions in the population.






Methods in the TorchGA Class

This section discusses the methods available for instances of the
pygad.torchga.TorchGA class.


create_population()

The create_population() method creates the initial population of the
genetic algorithm as a list of solutions where each solution represents
different model parameters. The list of networks is assigned to the
population_weights attribute of the instance.





Functions in the pygad.torchga Module

This section discusses the functions in the pygad.torchga module.


pygad.torchga.model_weights_as_vector()

The model_weights_as_vector() function accepts a single parameter
named model representing the PyTorch model. It returns a vector
holding all model weights. The reason for representing the model weights
as a vector is that the genetic algorithm expects all parameters of any
solution to be in a 1D vector form.

The function accepts the following parameters:


	model: The PyTorch model.




It returns a 1D vector holding the model weights.



pygad.torch.model_weights_as_dict()

The model_weights_as_dict() function accepts the following
parameters:


	model: The PyTorch model.


	weights_vector: The model parameters as a vector.




It returns the restored model weights in the same form used by the
state_dict() method. The returned dictionary is ready to be passed
to the load_state_dict() method for setting the PyTorch model’s
parameters.



pygad.torchga.predict()

The predict() function makes a prediction based on a solution. It
accepts the following parameters:


	model: The PyTorch model.


	solution: The solution evolved.


	data: The test data inputs.




It returns the predictions for the data samples.




Examples

This section gives the complete code of some examples that build and
train a PyTorch model using PyGAD. Each subsection builds a different
network.


Example 1: Regression Example

The next code builds a simple PyTorch model for regression. The next
subsections discuss each part in the code.

import torch
import torchga
import pygad

def fitness_func(ga_instance, solution, sol_idx):
    global data_inputs, data_outputs, torch_ga, model, loss_function

    predictions = pygad.torchga.predict(model=model,
                                        solution=solution,
                                        data=data_inputs)

    abs_error = loss_function(predictions, data_outputs).detach().numpy() + 0.00000001

    solution_fitness = 1.0 / abs_error

    return solution_fitness

def on_generation(ga_instance):
    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")

# Create the PyTorch model.
input_layer = torch.nn.Linear(3, 5)
relu_layer = torch.nn.ReLU()
output_layer = torch.nn.Linear(5, 1)

model = torch.nn.Sequential(input_layer,
                            relu_layer,
                            output_layer)
# print(model)

# Create an instance of the pygad.torchga.TorchGA class to build the initial population.
torch_ga = torchga.TorchGA(model=model,
                           num_solutions=10)

loss_function = torch.nn.L1Loss()

# Data inputs
data_inputs = torch.tensor([[0.02, 0.1, 0.15],
                            [0.7, 0.6, 0.8],
                            [1.5, 1.2, 1.7],
                            [3.2, 2.9, 3.1]])

# Data outputs
data_outputs = torch.tensor([[0.1],
                             [0.6],
                             [1.3],
                             [2.5]])

# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
num_generations = 250 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = torch_ga.population_weights # Initial population of network weights

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)

ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness(title="PyGAD & PyTorch - Iteration vs. Fitness", linewidth=4)

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

# Make predictions based on the best solution.
predictions = pygad.torchga.predict(model=model,
                                    solution=solution,
                                    data=data_inputs)
print("Predictions : \n", predictions.detach().numpy())

abs_error = loss_function(predictions, data_outputs)
print("Absolute Error : ", abs_error.detach().numpy())






Create a PyTorch model

According to the steps mentioned previously, the first step is to create
a PyTorch model. Here is the code that builds the model using the
Functional API.

import torch

input_layer = torch.nn.Linear(3, 5)
relu_layer = torch.nn.ReLU()
output_layer = torch.nn.Linear(5, 1)

model = torch.nn.Sequential(input_layer,
                            relu_layer,
                            output_layer)







Create an Instance of the pygad.torchga.TorchGA Class

The second step is to create an instance of the
pygad.torchga.TorchGA class. There are 10 solutions per population.
Change this number according to your needs.

import pygad.torchga

torch_ga = torchga.TorchGA(model=model,
                           num_solutions=10)







Prepare the Training Data

The third step is to prepare the training data inputs and outputs. Here
is an example where there are 4 samples. Each sample has 3 inputs and 1
output.

import numpy

# Data inputs
data_inputs = numpy.array([[0.02, 0.1, 0.15],
                           [0.7, 0.6, 0.8],
                           [1.5, 1.2, 1.7],
                           [3.2, 2.9, 3.1]])

# Data outputs
data_outputs = numpy.array([[0.1],
                            [0.6],
                            [1.3],
                            [2.5]])







Build the Fitness Function

The fourth step is to build the fitness function. This function must
accept 2 parameters representing the solution and its index within the
population.

The next fitness function calculates the mean absolute error (MAE) of
the PyTorch model based on the parameters in the solution. The
reciprocal of the MAE is used as the fitness value. Feel free to use any
other loss function to calculate the fitness value.

loss_function = torch.nn.L1Loss()

def fitness_func(ga_instance, solution, sol_idx):
    global data_inputs, data_outputs, torch_ga, model, loss_function

    predictions = pygad.torchga.predict(model=model,
                                        solution=solution,
                                        data=data_inputs)

    abs_error = loss_function(predictions, data_outputs).detach().numpy() + 0.00000001

    solution_fitness = 1.0 / abs_error

    return solution_fitness







Create an Instance of the pygad.GA Class

The fifth step is to instantiate the pygad.GA class. Note how the
initial_population parameter is assigned to the initial weights of
the PyTorch models.

For more information, please check the parameters this class
accepts [https://pygad.readthedocs.io/en/latest/pygad.html#init].

# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
num_generations = 250 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = torch_ga.population_weights # Initial population of network weights

ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)







Run the Genetic Algorithm

The sixth and last step is to run the genetic algorithm by calling the
run() method.

ga_instance.run()





After the PyGAD completes its execution, then there is a figure that
shows how the fitness value changes by generation. Call the
plot_fitness() method to show the figure.

ga_instance.plot_fitness(title="PyGAD & PyTorch - Iteration vs. Fitness", linewidth=4)





Here is the figure.
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To get information about the best solution found by PyGAD, use the
best_solution() method.

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")





Fitness value of the best solution = 145.42425295191546
Index of the best solution : 0





The next code restores the trained model weights using the
model_weights_as_dict() function. The restored weights are used to
calculate the predicted values.

predictions = pygad.torchga.predict(model=model,
                                    solution=solution,
                                    data=data_inputs)
print("Predictions : \n", predictions.detach().numpy())





Predictions :
[[0.08401088]
 [0.60939324]
 [1.3010881 ]
 [2.5010352 ]]





The next code measures the trained model error.

abs_error = loss_function(predictions, data_outputs)
print("Absolute Error : ", abs_error.detach().numpy())





Absolute Error :  0.006876422








Example 2: XOR Binary Classification

The next code creates a PyTorch model to build the XOR binary
classification problem. Let’s highlight the changes compared to the
previous example.

import torch
import torchga
import pygad

def fitness_func(ga_instance, solution, sol_idx):
    global data_inputs, data_outputs, torch_ga, model, loss_function

    predictions = pygad.torchga.predict(model=model,
                                        solution=solution,
                                        data=data_inputs)

    solution_fitness = 1.0 / (loss_function(predictions, data_outputs).detach().numpy() + 0.00000001)

    return solution_fitness

def on_generation(ga_instance):
    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")

# Create the PyTorch model.
input_layer  = torch.nn.Linear(2, 4)
relu_layer = torch.nn.ReLU()
dense_layer = torch.nn.Linear(4, 2)
output_layer = torch.nn.Softmax(1)

model = torch.nn.Sequential(input_layer,
                            relu_layer,
                            dense_layer,
                            output_layer)
# print(model)

# Create an instance of the pygad.torchga.TorchGA class to build the initial population.
torch_ga = torchga.TorchGA(model=model,
                           num_solutions=10)

loss_function = torch.nn.BCELoss()

# XOR problem inputs
data_inputs = torch.tensor([[0.0, 0.0],
                            [0.0, 1.0],
                            [1.0, 0.0],
                            [1.0, 1.0]])

# XOR problem outputs
data_outputs = torch.tensor([[1.0, 0.0],
                             [0.0, 1.0],
                             [0.0, 1.0],
                             [1.0, 0.0]])

# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
num_generations = 250 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = torch_ga.population_weights # Initial population of network weights.

# Create an instance of the pygad.GA class
ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)

# Start the genetic algorithm evolution.
ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness(title="PyGAD & PyTorch - Iteration vs. Fitness", linewidth=4)

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

# Make predictions based on the best solution.
predictions = pygad.torchga.predict(model=model,
                                    solution=solution,
                                    data=data_inputs)
print("Predictions : \n", predictions.detach().numpy())

# Calculate the binary crossentropy for the trained model.
print("Binary Crossentropy : ", loss_function(predictions, data_outputs).detach().numpy())

# Calculate the classification accuracy of the trained model.
a = torch.max(predictions, axis=1)
b = torch.max(data_outputs, axis=1)
accuracy = torch.sum(a.indices == b.indices) / len(data_outputs)
print("Accuracy : ", accuracy.detach().numpy())





Compared to the previous regression example, here are the changes:


	The PyTorch model is changed according to the nature of the problem.
Now, it has 2 inputs and 2 outputs with an in-between hidden layer of
4 neurons.




input_layer  = torch.nn.Linear(2, 4)
relu_layer = torch.nn.ReLU()
dense_layer = torch.nn.Linear(4, 2)
output_layer = torch.nn.Softmax(1)

model = torch.nn.Sequential(input_layer,
                            relu_layer,
                            dense_layer,
                            output_layer)






	The train data is changed. Note that the output of each sample is a
1D vector of 2 values, 1 for each class.




# XOR problem inputs
data_inputs = torch.tensor([[0.0, 0.0],
                            [0.0, 1.0],
                            [1.0, 0.0],
                            [1.0, 1.0]])

# XOR problem outputs
data_outputs = torch.tensor([[1.0, 0.0],
                             [0.0, 1.0],
                             [0.0, 1.0],
                             [1.0, 0.0]])






	The fitness value is calculated based on the binary cross entropy.




loss_function = torch.nn.BCELoss()





After the previous code completes, the next figure shows how the fitness
value change by generation.
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Here is some information about the trained model. Its fitness value is
100000000.0, loss is 0.0 and accuracy is 100%.

Fitness value of the best solution = 100000000.0

Index of the best solution : 0

Predictions :
[[1.0000000e+00 1.3627675e-10]
 [3.8521746e-09 1.0000000e+00]
 [4.2789325e-10 1.0000000e+00]
 [1.0000000e+00 3.3668417e-09]]

Binary Crossentropy :  0.0

Accuracy :  1.0







Example 3: Image Multi-Class Classification (Dense Layers)

Here is the code.

import torch
import torchga
import pygad
import numpy

def fitness_func(ga_instance, solution, sol_idx):
    global data_inputs, data_outputs, torch_ga, model, loss_function

    predictions = pygad.torchga.predict(model=model,
                                        solution=solution,
                                        data=data_inputs)

    solution_fitness = 1.0 / (loss_function(predictions, data_outputs).detach().numpy() + 0.00000001)

    return solution_fitness

def on_generation(ga_instance):
    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")

# Build the PyTorch model using the functional API.
input_layer = torch.nn.Linear(360, 50)
relu_layer = torch.nn.ReLU()
dense_layer = torch.nn.Linear(50, 4)
output_layer = torch.nn.Softmax(1)

model = torch.nn.Sequential(input_layer,
                            relu_layer,
                            dense_layer,
                            output_layer)

# Create an instance of the pygad.torchga.TorchGA class to build the initial population.
torch_ga = torchga.TorchGA(model=model,
                           num_solutions=10)

loss_function = torch.nn.CrossEntropyLoss()

# Data inputs
data_inputs = torch.from_numpy(numpy.load("dataset_features.npy")).float()

# Data outputs
data_outputs = torch.from_numpy(numpy.load("outputs.npy")).long()
# The next 2 lines are equivelant to this Keras function to perform 1-hot encoding: tensorflow.keras.utils.to_categorical(data_outputs)
# temp_outs = numpy.zeros((data_outputs.shape[0], numpy.unique(data_outputs).size), dtype=numpy.uint8)
# temp_outs[numpy.arange(data_outputs.shape[0]), numpy.uint8(data_outputs)] = 1

# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
num_generations = 200 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = torch_ga.population_weights # Initial population of network weights.

# Create an instance of the pygad.GA class
ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)

# Start the genetic algorithm evolution.
ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness(title="PyGAD & PyTorch - Iteration vs. Fitness", linewidth=4)

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

# Fetch the parameters of the best solution.
best_solution_weights = torchga.model_weights_as_dict(model=model,
                                                        weights_vector=solution)
model.load_state_dict(best_solution_weights)
predictions = model(data_inputs)
# print("Predictions : \n", predictions)

# Calculate the crossentropy loss of the trained model.
print("Crossentropy : ", loss_function(predictions, data_outputs).detach().numpy())

# Calculate the classification accuracy for the trained model.
accuracy = torch.sum(torch.max(predictions, axis=1).indices == data_outputs) / len(data_outputs)
print("Accuracy : ", accuracy.detach().numpy())





Compared to the previous binary classification example, this example has
multiple classes (4) and thus the loss is measured using cross entropy.

loss_function = torch.nn.CrossEntropyLoss()






Prepare the Training Data

Before building and training neural networks, the training data (input
and output) needs to be prepared. The inputs and the outputs of the
training data are NumPy arrays.

The data used in this example is available as 2 files:


	dataset_features.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy]:
Data inputs.
https://github.com/ahmedfgad/NumPyANN/blob/master/dataset_features.npy


	outputs.npy [https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy]:
Class labels.
https://github.com/ahmedfgad/NumPyANN/blob/master/outputs.npy




The data consists of 4 classes of images. The image shape is
(100, 100, 3). The number of training samples is 1962. The feature
vector extracted from each image has a length 360.

import numpy

data_inputs = numpy.load("dataset_features.npy")

data_outputs = numpy.load("outputs.npy")





The next figure shows how the fitness value changes.
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Here are some statistics about the trained model.

Fitness value of the best solution = 1.3446997034434534
Index of the best solution : 0
Crossentropy :  0.74366045
Accuracy :  1.0








Example 4: Image Multi-Class Classification (Conv Layers)

Compared to the previous example that uses only dense layers, this
example uses convolutional layers to classify the same dataset.

Here is the complete code.

import torch
import torchga
import pygad
import numpy

def fitness_func(ga_instance, solution, sol_idx):
    global data_inputs, data_outputs, torch_ga, model, loss_function

    predictions = pygad.torchga.predict(model=model,
                                        solution=solution,
                                        data=data_inputs)

    solution_fitness = 1.0 / (loss_function(predictions, data_outputs).detach().numpy() + 0.00000001)

    return solution_fitness

def on_generation(ga_instance):
    print(f"Generation = {ga_instance.generations_completed}")
    print(f"Fitness    = {ga_instance.best_solution()[1]}")

# Build the PyTorch model.
input_layer = torch.nn.Conv2d(in_channels=3, out_channels=5, kernel_size=7)
relu_layer1 = torch.nn.ReLU()
max_pool1 = torch.nn.MaxPool2d(kernel_size=5, stride=5)

conv_layer2 = torch.nn.Conv2d(in_channels=5, out_channels=3, kernel_size=3)
relu_layer2 = torch.nn.ReLU()

flatten_layer1 = torch.nn.Flatten()
# The value 768 is pre-computed by tracing the sizes of the layers' outputs.
dense_layer1 = torch.nn.Linear(in_features=768, out_features=15)
relu_layer3 = torch.nn.ReLU()

dense_layer2 = torch.nn.Linear(in_features=15, out_features=4)
output_layer = torch.nn.Softmax(1)

model = torch.nn.Sequential(input_layer,
                            relu_layer1,
                            max_pool1,
                            conv_layer2,
                            relu_layer2,
                            flatten_layer1,
                            dense_layer1,
                            relu_layer3,
                            dense_layer2,
                            output_layer)

# Create an instance of the pygad.torchga.TorchGA class to build the initial population.
torch_ga = torchga.TorchGA(model=model,
                           num_solutions=10)

loss_function = torch.nn.CrossEntropyLoss()

# Data inputs
data_inputs = torch.from_numpy(numpy.load("dataset_inputs.npy")).float()
data_inputs = data_inputs.reshape((data_inputs.shape[0], data_inputs.shape[3], data_inputs.shape[1], data_inputs.shape[2]))

# Data outputs
data_outputs = torch.from_numpy(numpy.load("dataset_outputs.npy")).long()

# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/pygad.html#pygad-ga-class
num_generations = 200 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = torch_ga.population_weights # Initial population of network weights.

# Create an instance of the pygad.GA class
ga_instance = pygad.GA(num_generations=num_generations,
                       num_parents_mating=num_parents_mating,
                       initial_population=initial_population,
                       fitness_func=fitness_func,
                       on_generation=on_generation)

# Start the genetic algorithm evolution.
ga_instance.run()

# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_fitness(title="PyGAD & PyTorch - Iteration vs. Fitness", linewidth=4)

# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")

# Make predictions based on the best solution.
predictions = pygad.torchga.predict(model=model,
                                    solution=solution,
                                    data=data_inputs)
# print("Predictions : \n", predictions)

# Calculate the crossentropy for the trained model.
print("Crossentropy : ", loss_function(predictions, data_outputs).detach().numpy())

# Calculate the classification accuracy for the trained model.
accuracy = torch.sum(torch.max(predictions, axis=1).indices == data_outputs) / len(data_outputs)
print("Accuracy : ", accuracy.detach().numpy())





Compared to the previous example, the only change is that the
architecture uses convolutional and max-pooling layers. The shape of
each input sample is 100x100x3.

input_layer = torch.nn.Conv2d(in_channels=3, out_channels=5, kernel_size=7)
relu_layer1 = torch.nn.ReLU()
max_pool1 = torch.nn.MaxPool2d(kernel_size=5, stride=5)

conv_layer2 = torch.nn.Conv2d(in_channels=5, out_channels=3, kernel_size=3)
relu_layer2 = torch.nn.ReLU()

flatten_layer1 = torch.nn.Flatten()
# The value 768 is pre-computed by tracing the sizes of the layers' outputs.
dense_layer1 = torch.nn.Linear(in_features=768, out_features=15)
relu_layer3 = torch.nn.ReLU()

dense_layer2 = torch.nn.Linear(in_features=15, out_features=4)
output_layer = torch.nn.Softmax(1)

model = torch.nn.Sequential(input_layer,
                            relu_layer1,
                            max_pool1,
                            conv_layer2,
                            relu_layer2,
                            flatten_layer1,
                            dense_layer1,
                            relu_layer3,
                            dense_layer2,
                            output_layer)






Prepare the Training Data

The data used in this example is available as 2 files:


	dataset_inputs.npy [https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_inputs.npy]:
Data inputs.
https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_inputs.npy


	dataset_outputs.npy [https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_outputs.npy]:
Class labels.
https://github.com/ahmedfgad/NumPyCNN/blob/master/dataset_outputs.npy




The data consists of 4 classes of images. The image shape is
(100, 100, 3) and there are 20 images per class for a total of 80
training samples. For more information about the dataset, check the
Reading the
Data [https://pygad.readthedocs.io/en/latest/cnn.html#reading-the-data]
section of the pygad.cnn module.

Simply download these 2 files and read them according to the next code.

import numpy

data_inputs = numpy.load("dataset_inputs.npy")

data_outputs = numpy.load("dataset_outputs.npy")





The next figure shows how the fitness value changes.
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Here are some statistics about the trained model. The model accuracy is
97.5% after the 200 generations. Note that just running the code again
may give different results.

Fitness value of the best solution = 1.3009520689219258
Index of the best solution : 0
Crossentropy :  0.7686678
Accuracy :  0.975










            

          

      

      

    

  

    
      
          
            
  
Release History
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PyGAD 1.0.17

Release Date: 15 April 2020


	The pygad.GA class accepts a new argument named fitness_func
which accepts a function to be used for calculating the fitness
values for the solutions. This allows the project to be customized to
any problem by building the right fitness function.






PyGAD 1.0.20

Release Date: 4 May 2020


	The pygad.GA attributes are moved from the class scope to the
instance scope.


	Raising an exception for incorrect values of the passed parameters.


	Two new parameters are added to the pygad.GA class constructor
(init_range_low and init_range_high) allowing the user to
customize the range from which the genes values in the initial
population are selected.


	The code object __code__ of the passed fitness function is
checked to ensure it has the right number of parameters.






PyGAD 2.0.0

Release Date: 13 May 2020


	The fitness function accepts a new argument named sol_idx
representing the index of the solution within the population.


	A new parameter to the pygad.GA class constructor named
initial_population is supported to allow the user to use a custom
initial population to be used by the genetic algorithm. If not None,
then the passed population will be used. If None, then the
genetic algorithm will create the initial population using the
sol_per_pop and num_genes parameters.


	The parameters sol_per_pop and num_genes are optional and set
to None by default.


	A new parameter named callback_generation is introduced in the
pygad.GA class constructor. It accepts a function with a single
parameter representing the pygad.GA class instance. This function
is called after each generation. This helps the user to do
post-processing or debugging operations after each generation.






PyGAD 2.1.0

Release Date: 14 May 2020


	The best_solution() method in the pygad.GA class returns a
new output representing the index of the best solution within the
population. Now, it returns a total of 3 outputs and their order is:
best solution, best solution fitness, and best solution index. Here
is an example:




solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Parameters of the best solution :", solution)
print("Fitness value of the best solution :", solution_fitness, "\n")
print("Index of the best solution :", solution_idx, "\n")






	
A new attribute named best_solution_generation is added to the
instances of the pygad.GA class. it holds the generation number
at which the best solution is reached. It is only assigned the
generation number after the run() method completes. Otherwise,
its value is -1.

Example:







print("Best solution reached after {best_solution_generation} generations.".format(best_solution_generation=ga_instance.best_solution_generation))






	The best_solution_fitness attribute is renamed to
best_solutions_fitness (plural solution).


	Mutation is applied independently for the genes.






PyGAD 2.2.1

Release Date: 17 May 2020


	Adding 2 extra modules (pygad.nn and pygad.gann) for building and
training neural networks with the genetic algorithm.






PyGAD 2.2.2

Release Date: 18 May 2020


	The initial value of the generations_completed attribute of
instances from the pygad.GA class is 0 rather than None.


	An optional bool parameter named mutation_by_replacement is added
to the constructor of the pygad.GA class. It works only when the
selected type of mutation is random (mutation_type="random"). In
this case, setting mutation_by_replacement=True means replace the
gene by the randomly generated value. If False, then it has no
effect and random mutation works by adding the random value to the
gene. This parameter should be used when the gene falls within a
fixed range and its value must not go out of this range. Here are
some examples:




Assume there is a gene with the value 0.5.

If mutation_type="random" and mutation_by_replacement=False,
then the generated random value (e.g. 0.1) will be added to the gene
value. The new gene value is 0.5+0.1=0.6.

If mutation_type="random" and mutation_by_replacement=True, then
the generated random value (e.g. 0.1) will replace the gene value. The
new gene value is 0.1.


	None value could be assigned to the mutation_type and
crossover_type parameters of the pygad.GA class constructor. When
None, this means the step is bypassed and has no action.






PyGAD 2.3.0

Release date: 1 June 2020


	A new module named pygad.cnn is supported for building
convolutional neural networks.


	A new module named pygad.gacnn is supported for training
convolutional neural networks using the genetic algorithm.


	The pygad.plot_result() method has 3 optional parameters named
title, xlabel, and ylabel to customize the plot title,
x-axis label, and y-axis label, respectively.


	The pygad.nn module supports the softmax activation function.


	The name of the pygad.nn.predict_outputs() function is changed to
pygad.nn.predict().


	The name of the pygad.nn.train_network() function is changed to
pygad.nn.train().






PyGAD 2.4.0

Release date: 5 July 2020


	A new parameter named delay_after_gen is added which accepts a
non-negative number specifying the time in seconds to wait after a
generation completes and before going to the next generation. It
defaults to 0.0 which means no delay after the generation.


	The passed function to the callback_generation parameter of the
pygad.GA class constructor can terminate the execution of the genetic
algorithm if it returns the string stop. This causes the
run() method to stop.




One important use case for that feature is to stop the genetic algorithm
when a condition is met before passing though all the generations. The
user may assigned a value of 100 to the num_generations parameter of
the pygad.GA class constructor. Assuming that at generation 50, for
example, a condition is met and the user wants to stop the execution
before waiting the remaining 50 generations. To do that, just make the
function passed to the callback_generation parameter to return the
string stop.

Here is an example of a function to be passed to the
callback_generation parameter which stops the execution if the
fitness value 70 is reached. The value 70 might be the best possible
fitness value. After being reached, then there is no need to pass
through more generations because no further improvement is possible.

def func_generation(ga_instance):
 if ga_instance.best_solution()[1] >= 70:
     return "stop"







PyGAD 2.5.0

Release date: 19 July 2020


	
2 new optional parameters added to the constructor of the
pygad.GA class which are crossover_probability and
mutation_probability.

While applying the crossover operation, each parent has a random
value generated between 0.0 and 1.0. If this random value is less
than or equal to the value assigned to the
crossover_probability parameter, then the parent is selected
for the crossover operation.

For the mutation operation, a random value between 0.0 and 1.0 is
generated for each gene in the solution. If this value is less than
or equal to the value assigned to the mutation_probability,
then this gene is selected for mutation.





	A new optional parameter named linewidth is added to the
plot_result() method to specify the width of the curve in the
plot. It defaults to 3.0.


	Previously, the indices of the genes selected for mutation was
randomly generated once for all solutions within the generation.
Currently, the genes’ indices are randomly generated for each
solution in the population. If the population has 4 solutions, the
indices are randomly generated 4 times inside the single generation,
1 time for each solution.


	Previously, the position of the point(s) for the single-point and
two-points crossover was(were) randomly selected once for all
solutions within the generation. Currently, the position(s) is(are)
randomly selected for each solution in the population. If the
population has 4 solutions, the position(s) is(are) randomly
generated 4 times inside the single generation, 1 time for each
solution.


	A new optional parameter named gene_space as added to the
pygad.GA class constructor. It is used to specify the possible
values for each gene in case the user wants to restrict the gene
values. It is useful if the gene space is restricted to a certain
range or to discrete values. For more information, check the More
about the ``gene_space`
Parameter <https://pygad.readthedocs.io/en/latest/pygad_more.html#more-about-the-gene-space-parameter>`__
section. Thanks to Prof. Tamer A.
Farrag [https://github.com/tfarrag2000] for requesting this useful
feature.






PyGAD 2.6.0

Release Date: 6 August 2020


	A bug fix in assigning the value to the initial_population
parameter.


	A new parameter named gene_type is added to control the gene
type. It can be either int or float. It has an effect only
when the parameter gene_space is None.


	7 new parameters that accept callback functions: on_start,
on_fitness, on_parents, on_crossover, on_mutation,
on_generation, and on_stop.






PyGAD 2.7.0

Release Date: 11 September 2020


	The learning_rate parameter in the pygad.nn.train() function
defaults to 0.01.


	Added support of building neural networks for regression using the
new parameter named problem_type. It is added as a parameter to
both pygad.nn.train() and pygad.nn.predict() functions. The
value of this parameter can be either classification or
regression to define the problem type. It defaults to
classification.


	The activation function for a layer can be set to the string
"None" to refer that there is no activation function at this
layer. As a result, the supported values for the activation function
are "sigmoid", "relu", "softmax", and "None".




To build a regression network using the pygad.nn module, just do the
following:


	Set the problem_type parameter in the pygad.nn.train() and
pygad.nn.predict() functions to the string "regression".


	Set the activation function for the output layer to the string
"None". This sets no limits on the range of the outputs as it
will be from -infinity to +infinity. If you are sure that all
outputs will be nonnegative values, then use the ReLU function.




Check the documentation of the pygad.nn module for an example that
builds a neural network for regression. The regression example is also
available at this GitHub
project [https://github.com/ahmedfgad/NumPyANN]:
https://github.com/ahmedfgad/NumPyANN

To build and train a regression network using the pygad.gann module,
do the following:


	Set the problem_type parameter in the pygad.nn.train() and
pygad.nn.predict() functions to the string "regression".


	Set the output_activation parameter in the constructor of the
pygad.gann.GANN class to "None".




Check the documentation of the pygad.gann module for an example that
builds and trains a neural network for regression. The regression
example is also available at this GitHub
project [https://github.com/ahmedfgad/NeuralGenetic]:
https://github.com/ahmedfgad/NeuralGenetic

To build a classification network, either ignore the problem_type
parameter or set it to "classification" (default value). In this
case, the activation function of the last layer can be set to any type
(e.g. softmax).



PyGAD 2.7.1

Release Date: 11 September 2020


	A bug fix when the problem_type argument is set to
regression.






PyGAD 2.7.2

Release Date: 14 September 2020


	Bug fix to support building and training regression neural networks
with multiple outputs.






PyGAD 2.8.0

Release Date: 20 September 2020


	Support of a new module named kerasga so that the Keras models
can be trained by the genetic algorithm using PyGAD.






PyGAD 2.8.1

Release Date: 3 October 2020


	Bug fix in applying the crossover operation when the
crossover_probability parameter is used. Thanks to Eng. Hamada
Kassem, Research and Teaching Assistant, Construction Engineering and
Management, Faculty of Engineering, Alexandria University,
Egypt [https://www.linkedin.com/in/hamadakassem].






PyGAD 2.9.0

Release Date: 06 December 2020


	The fitness values of the initial population are considered in the
best_solutions_fitness attribute.


	An optional parameter named save_best_solutions is added. It
defaults to False. When it is True, then the best solution
after each generation is saved into an attribute named
best_solutions. If False, then no solutions are saved and the
best_solutions attribute will be empty.


	Scattered crossover is supported. To use it, assign the
crossover_type parameter the value "scattered".


	NumPy arrays are now supported by the gene_space parameter.


	The following parameters (gene_type, crossover_probability,
mutation_probability, delay_after_gen) can be assigned to a
numeric value of any of these data types: int, float,
numpy.int, numpy.int8, numpy.int16, numpy.int32,
numpy.int64, numpy.float, numpy.float16,
numpy.float32, or numpy.float64.






PyGAD 2.10.0

Release Date: 03 January 2021


	Support of a new module pygad.torchga to train PyTorch models
using PyGAD. Check its
documentation [https://pygad.readthedocs.io/en/latest/torchga.html].


	Support of adaptive mutation where the mutation rate is determined
by the fitness value of each solution. Read the Adaptive
Mutation [https://pygad.readthedocs.io/en/latest/pygad_more.html#adaptive-mutation]
section for more details. Also, read this paper: Libelli, S.
Marsili, and P. Alba. “Adaptive mutation in genetic algorithms.”
Soft computing 4.2 (2000):
76-80. [https://www.researchgate.net/publication/225642916_Adaptive_mutation_in_genetic_algorithms]


	Before the run() method completes or exits, the fitness value of
the best solution in the current population is appended to the
best_solution_fitness list attribute. Note that the fitness
value of the best solution in the initial population is already
saved at the beginning of the list. So, the fitness value of the
best solution is saved before the genetic algorithm starts and after
it ends.


	When the parameter parent_selection_type is set to sss
(steady-state selection), then a warning message is printed if the
value of the keep_parents parameter is set to 0.


	More validations to the user input parameters.


	The default value of the mutation_percent_genes is set to the
string "default" rather than the integer 10. This change helps
to know whether the user explicitly passed a value to the
mutation_percent_genes parameter or it is left to its default
one. The "default" value is later translated into the integer
10.


	The mutation_percent_genes parameter is no longer accepting the
value 0. It must be >0 and <=100.


	The built-in warnings module is used to show warning messages
rather than just using the print() function.


	A new bool parameter called suppress_warnings is added to
the constructor of the pygad.GA class. It allows the user to
control whether the warning messages are printed or not. It defaults
to False which means the messages are printed.


	A helper method called adaptive_mutation_population_fitness() is
created to calculate the average fitness value used in adaptive
mutation to filter the solutions.


	The best_solution() method accepts a new optional parameter
called pop_fitness. It accepts a list of the fitness values of
the solutions in the population. If None, then the
cal_pop_fitness() method is called to calculate the fitness
values of the population.






PyGAD 2.10.1

Release Date: 10 January 2021


	In the gene_space parameter, any None value (regardless of
its index or axis), is replaced by a randomly generated number based
on the 3 parameters init_range_low, init_range_high, and
gene_type. So, the None value in [..., None, ...] or
[..., [..., None, ...], ...] are replaced with random values.
This gives more freedom in building the space of values for the
genes.


	All the numbers passed to the gene_space parameter are casted to
the type specified in the gene_type parameter.


	The numpy.uint data type is supported for the parameters that
accept integer values.


	In the pygad.kerasga module, the model_weights_as_vector()
function uses the trainable attribute of the model’s layers to
only return the trainable weights in the network. So, only the
trainable layers with their trainable attribute set to True
(trainable=True), which is the default value, have their weights
evolved. All non-trainable layers with the trainable attribute
set to False (trainable=False) will not be evolved. Thanks to
Prof. Tamer A. Farrag [https://github.com/tfarrag2000] for
pointing about that at
GitHub [https://github.com/ahmedfgad/KerasGA/issues/1].






PyGAD 2.10.2

Release Date: 15 January 2021


	A bug fix when save_best_solutions=True. Refer to this issue for
more information:
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/25






PyGAD 2.11.0

Release Date: 16 February 2021


	In the gene_space argument, the user can use a dictionary to
specify the lower and upper limits of the gene. This dictionary must
have only 2 items with keys low and high to specify the low
and high limits of the gene, respectively. This way, PyGAD takes care
of not exceeding the value limits of the gene. For a problem with
only 2 genes, then using
gene_space=[{'low': 1, 'high': 5}, {'low': 0.2, 'high': 0.81}]
means the accepted values in the first gene start from 1 (inclusive)
to 5 (exclusive) while the second one has values between 0.2
(inclusive) and 0.85 (exclusive). For more information, please check
the Limit the Gene Value
Range [https://pygad.readthedocs.io/en/latest/pygad_more.html#limit-the-gene-value-range]
section of the documentation.


	The plot_result() method returns the figure so that the user can
save it.


	Bug fixes in copying elements from the gene space.


	For a gene with a set of discrete values (more than 1 value) in the
gene_space parameter like [0, 1], it was possible that the
gene value may not change after mutation. That is if the current
value is 0, then the randomly selected value could also be 0. Now, it
is verified that the new value is changed. So, if the current value
is 0, then the new value after mutation will not be 0 but 1.






PyGAD 2.12.0

Release Date: 20 February 2021


	4 new instance attributes are added to hold temporary results after
each generation: last_generation_fitness holds the fitness values
of the solutions in the last generation, last_generation_parents
holds the parents selected from the last generation,
last_generation_offspring_crossover holds the offspring generated
after applying the crossover in the last generation, and
last_generation_offspring_mutation holds the offspring generated
after applying the mutation in the last generation. You can access
these attributes inside the on_generation() method for example.


	A bug fixed when the initial_population parameter is used. The
bug occurred due to a mismatch between the data type of the array
assigned to initial_population and the gene type in the
gene_type attribute. Assuming that the array assigned to the
initial_population parameter is
((1, 1), (3, 3), (5, 5), (7, 7)) which has type int. When
gene_type is set to float, then the genes will not be float
but casted to int because the defined array has int type. The
bug is fixed by forcing the array assigned to initial_population
to have the data type in the gene_type attribute. Check the
issue at
GitHub [https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/27]:
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/27




Thanks to Andrei Rozanski [PhD Bioinformatics Specialist, Department of
Tissue Dynamics and Regeneration, Max Planck Institute for Biophysical
Chemistry, Germany] for opening my eye to the first change.

Thanks to Marios
Giouvanakis [https://www.researchgate.net/profile/Marios-Giouvanakis],
a PhD candidate in Electrical & Computer Engineer, Aristotle University
of Thessaloniki (Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης),
Greece [https://www.auth.gr/en], for emailing me about the second
issue.



PyGAD 2.13.0

Release Date: 12 March 2021


	A new bool parameter called allow_duplicate_genes is
supported. If True, which is the default, then a
solution/chromosome may have duplicate gene values. If False,
then each gene will have a unique value in its solution. Check the
Prevent Duplicates in Gene
Values [https://pygad.readthedocs.io/en/latest/pygad_more.html#prevent-duplicates-in-gene-values]
section for more details.


	The last_generation_fitness is updated at the end of each
generation not at the beginning. This keeps the fitness values of the
most up-to-date population assigned to the
last_generation_fitness parameter.






PyGAD 2.14.0

PyGAD 2.14.0 has an issue that is solved in PyGAD 2.14.1. Please
consider using 2.14.1 not 2.14.0.

Release Date: 19 May 2021


	Issue
#40 [https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/40]
is solved. Now, the None value works with the crossover_type
and mutation_type parameters:
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/40


	The gene_type parameter supports accepting a
list/tuple/numpy.ndarray of numeric data types for the genes.
This helps to control the data type of each individual gene.
Previously, the gene_type can be assigned only to a single data
type that is applied for all genes. For more information, check the
More about the ``gene_type`
Parameter <https://pygad.readthedocs.io/en/latest/pygad_more.html#more-about-the-gene-type-parameter>`__
section. Thanks to Rainer
Engel [https://www.linkedin.com/in/rainer-matthias-engel-5ba47a9]
for asking about this feature in this
discussion [https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/43]:
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/43


	A new bool attribute named gene_type_single is added to the
pygad.GA class. It is True when there is a single data type
assigned to the gene_type parameter. When the gene_type
parameter is assigned a list/tuple/numpy.ndarray, then
gene_type_single is set to False.


	The mutation_by_replacement flag now has no effect if
gene_space exists except for the genes with None values. For
example, for gene_space=[None, [5, 6]] the
mutation_by_replacement flag affects only the first gene which
has None for its value space.


	When an element has a value of None in the gene_space
parameter (e.g. gene_space=[None, [5, 6]]), then its value will
be randomly generated for each solution rather than being generate
once for all solutions. Previously, the gene with None value in
gene_space is the same across all solutions


	Some changes in the documentation according to issue
#32 [https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/32]:
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/32






PyGAD 2.14.2

Release Date: 27 May 2021


	Some bug fixes when the gene_type parameter is nested. Thanks to
Rainer
Engel [https://www.linkedin.com/in/rainer-matthias-engel-5ba47a9]
for opening a
discussion [https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/43#discussioncomment-763342]
to report this bug:
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/43#discussioncomment-763342




Rainer
Engel [https://www.linkedin.com/in/rainer-matthias-engel-5ba47a9]
helped a lot in suggesting new features and suggesting enhancements in
2.14.0 to 2.14.2 releases.



PyGAD 2.14.3

Release Date: 6 June 2021


	Some bug fixes when setting the save_best_solutions parameter to
True. Previously, the best solution for generation i was
added into the best_solutions attribute at generation i+1.
Now, the best_solutions attribute is updated by each best
solution at its exact generation.






PyGAD 2.15.0

Release Date: 17 June 2021


	Control the precision of all genes/individual genes. Thanks to
Rainer [https://github.com/rengel8] for asking about this
feature:
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/43#discussioncomment-763452


	A new attribute named last_generation_parents_indices holds the
indices of the selected parents in the last generation.


	In adaptive mutation, no need to recalculate the fitness values of
the parents selected in the last generation as these values can be
returned based on the last_generation_fitness and
last_generation_parents_indices attributes. This speeds-up the
adaptive mutation.


	When a sublist has a value of None in the gene_space
parameter (e.g. gene_space=[[1, 2, 3], [5, 6, None]]), then its
value will be randomly generated for each solution rather than being
generated once for all solutions. Previously, a value of None in
a sublist of the gene_space parameter was identical across all
solutions.


	The dictionary assigned to the gene_space parameter itself or
one of its elements has a new key called "step" to specify the
step of moving from the start to the end of the range specified by
the 2 existing keys "low" and "high". An example is
{"low": 0, "high": 30, "step": 2} to have only even values for
the gene(s) starting from 0 to 30. For more information, check the
More about the ``gene_space`
Parameter <https://pygad.readthedocs.io/en/latest/pygad_more.html#more-about-the-gene-space-parameter>`__
section.
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/48


	A new function called predict() is added in both the
pygad.kerasga and pygad.torchga modules to make predictions.
This makes it easier than using custom code each time a prediction
is to be made.


	A new parameter called stop_criteria allows the user to specify
one or more stop criteria to stop the evolution based on some
conditions. Each criterion is passed as str which has a stop
word. The current 2 supported words are reach and saturate.
reach stops the run() method if the fitness value is equal
to or greater than a given fitness value. An example for reach
is "reach_40" which stops the evolution if the fitness is >= 40.
saturate means stop the evolution if the fitness saturates for a
given number of consecutive generations. An example for saturate
is "saturate_7" which means stop the run() method if the
fitness does not change for 7 consecutive generations. Thanks to
Rainer [https://github.com/rengel8] for asking about this
feature:
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/44


	A new bool parameter, defaults to False, named
save_solutions is added to the constructor of the pygad.GA
class. If True, then all solutions in each generation are
appended into an attribute called solutions which is NumPy
array.


	The plot_result() method is renamed to plot_fitness(). The
users should migrate to the new name as the old name will be removed
in the future.


	Four new optional parameters are added to the plot_fitness()
function in the pygad.GA class which are font_size=14,
save_dir=None, color="#3870FF", and plot_type="plot".
Use font_size to change the font of the plot title and labels.
save_dir accepts the directory to which the figure is saved. It
defaults to None which means do not save the figure. color
changes the color of the plot. plot_type changes the plot type
which can be either "plot" (default), "scatter", or
"bar".
https://github.com/ahmedfgad/GeneticAlgorithmPython/pull/47


	The default value of the title parameter in the
plot_fitness() method is "PyGAD - Generation vs. Fitness"
rather than "PyGAD - Iteration vs. Fitness".


	A new method named plot_new_solution_rate() creates, shows, and
returns a figure showing the rate of new/unique solutions explored
in each generation. It accepts the same parameters as in the
plot_fitness() method. This method only works when
save_solutions=True in the pygad.GA class’s constructor.


	A new method named plot_genes() creates, shows, and returns a
figure to show how each gene changes per each generation. It accepts
similar parameters like the plot_fitness() method in addition to
the graph_type, fill_color, and solutions parameters.
The graph_type parameter can be either "plot" (default),
"boxplot", or "histogram". fill_color accepts the fill
color which works when graph_type is either "boxplot" or
"histogram". solutions can be either "all" or "best"
to decide whether all solutions or only best solutions are used.


	The gene_type parameter now supports controlling the precision
of float data types. For a gene, rather than assigning just the
data type like float, assign a
list/tuple/numpy.ndarray with 2 elements where the first
one is the type and the second one is the precision. For example,
[float, 2] forces a gene with a value like 0.1234 to be
0.12. For more information, check the More about the
``gene_type`
Parameter <https://pygad.readthedocs.io/en/latest/pygad_more.html#more-about-the-gene-type-parameter>`__
section.






PyGAD 2.15.1

Release Date: 18 June 2021


	Fix a bug when keep_parents is set to a positive integer.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/49






PyGAD 2.15.2

Release Date: 18 June 2021


	Fix a bug when using the kerasga or torchga modules.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/51






PyGAD 2.16.0

Release Date: 19 June 2021


	A user-defined function can be passed to the mutation_type,
crossover_type, and parent_selection_type parameters in the
pygad.GA class to create a custom mutation, crossover, and parent
selection operators. Check the User-Defined Crossover, Mutation, and
Parent Selection
Operators [https://pygad.readthedocs.io/en/latest/pygad_more.html#user-defined-crossover-mutation-and-parent-selection-operators]
section for more details.
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/50






PyGAD 2.16.1

Release Date: 28 September 2021


	The user can use the tqdm library to show a progress bar.
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/50.




import pygad
import numpy
import tqdm

equation_inputs = [4,-2,3.5]
desired_output = 44

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

num_generations = 10000
with tqdm.tqdm(total=num_generations) as pbar:
    ga_instance = pygad.GA(num_generations=num_generations,
                           sol_per_pop=5,
                           num_parents_mating=2,
                           num_genes=len(equation_inputs),
                           fitness_func=fitness_func,
                           on_generation=lambda _: pbar.update(1))

    ga_instance.run()

ga_instance.plot_result()





But this work does not work if the ga_instance will be pickled (i.e.
the save() method will be called.

ga_instance.save("test")





To solve this issue, define a function and pass it to the
on_generation parameter. In the next code, the
on_generation_progress() function is defined which updates the
progress bar.

import pygad
import numpy
import tqdm

equation_inputs = [4,-2,3.5]
desired_output = 44

def fitness_func(ga_instance, solution, solution_idx):
    output = numpy.sum(solution * equation_inputs)
    fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
    return fitness

def on_generation_progress(ga):
    pbar.update(1)

num_generations = 100
with tqdm.tqdm(total=num_generations) as pbar:
    ga_instance = pygad.GA(num_generations=num_generations,
                           sol_per_pop=5,
                           num_parents_mating=2,
                           num_genes=len(equation_inputs),
                           fitness_func=fitness_func,
                           on_generation=on_generation_progress)

    ga_instance.run()

ga_instance.plot_result()

ga_instance.save("test")






	Solved the issue of unequal length between the solutions and
solutions_fitness when the save_solutions parameter is set to
True. Now, the fitness of the last population is appended to the
solutions_fitness array.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/64


	There was an issue of getting the length of these 4 variables
(solutions, solutions_fitness, best_solutions, and
best_solutions_fitness) doubled after each call of the run()
method. This is solved by resetting these variables at the beginning
of the run() method.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/62


	Bug fixes when adaptive mutation is used
(mutation_type="adaptive").
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/65






PyGAD 2.16.2

Release Date: 2 February 2022


	A new instance attribute called previous_generation_fitness added
in the pygad.GA class. It holds the fitness values of one
generation before the fitness values saved in the
last_generation_fitness.


	Issue in the cal_pop_fitness() method in getting the correct
indices of the previous parents. This is solved by using the previous
generation’s fitness saved in the new attribute
previous_generation_fitness to return the parents’ fitness
values. Thanks to Tobias Tischhauser (M.Sc. - Mitarbeiter Institut
EMS, Departement Technik, OST – Ostschweizer Fachhochschule,
Switzerland [https://www.ost.ch/de/forschung-und-dienstleistungen/technik/systemtechnik/ems/team])
for detecting this bug.






PyGAD 2.16.3

Release Date: 2 February 2022


	Validate the fitness value returned from the fitness function. An
exception is raised if something is wrong.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/67






PyGAD 2.17.0

Release Date: 8 July 2022


	An issue is solved when the gene_space parameter is given a fixed
value. e.g. gene_space=[range(5), 4]. The second gene’s value is
static (4) which causes an exception.


	Fixed the issue where the allow_duplicate_genes parameter did not
work when mutation is disabled (i.e. mutation_type=None). This is
by checking for duplicates after crossover directly.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/39


	Solve an issue in the tournament_selection() method as the
indices of the selected parents were incorrect.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/89


	Reuse the fitness values of the previously explored solutions rather
than recalculating them. This feature only works if
save_solutions=True.


	Parallel processing is supported. This is by the introduction of a
new parameter named parallel_processing in the constructor of the
pygad.GA class. Thanks to
@windowshopr [https://github.com/windowshopr] for opening the
issue
#78 [https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/78]
at GitHub. Check the Parallel Processing in
PyGAD [https://pygad.readthedocs.io/en/latest/pygad_more.html#parallel-processing-in-pygad]
section for more information and examples.






PyGAD 2.18.0

Release Date: 9 September 2022


	Raise an exception if the sum of fitness values is zero while either
roulette wheel or stochastic universal parent selection is used.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/129


	Initialize the value of the run_completed property to False.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/122


	The values of these properties are no longer reset with each call to
the run() method
self.best_solutions, self.best_solutions_fitness, self.solutions, self.solutions_fitness:
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/123. Now,
the user can have the flexibility of calling the run() method
more than once while extending the data collected after each
generation. Another advantage happens when the instance is loaded and
the run() method is called, as the old fitness value are shown on
the graph alongside with the new fitness values. Read more in this
section: Continue without Losing
Progress [https://pygad.readthedocs.io/en/latest/pygad_more.html#continue-without-losing-progress]


	Thanks Prof. Fernando Jiménez
Barrionuevo [http://webs.um.es/fernan] (Dept. of Information and
Communications Engineering, University of Murcia, Murcia, Spain) for
editing this
comment [https://github.com/ahmedfgad/GeneticAlgorithmPython/blob/5315bbec02777df96ce1ec665c94dece81c440f4/pygad.py#L73]
in the code.
https://github.com/ahmedfgad/GeneticAlgorithmPython/commit/5315bbec02777df96ce1ec665c94dece81c440f4


	A bug fixed when crossover_type=None.


	Support of elitism selection through a new parameter named
keep_elitism. It defaults to 1 which means for each generation
keep only the best solution in the next generation. If assigned 0,
then it has no effect. Read more in this section: Elitism
Selection [https://pygad.readthedocs.io/en/latest/pygad_more.html#elitism-selection].
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/74


	A new instance attribute named last_generation_elitism added to
hold the elitism in the last generation.


	A new parameter called random_seed added to accept a seed for the
random function generators. Credit to this issue
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/70 and
Prof. Fernando Jiménez Barrionuevo [http://webs.um.es/fernan].
Read more in this section: Random
Seed [https://pygad.readthedocs.io/en/latest/pygad_more.html#random-seed].


	Editing the pygad.TorchGA module to make sure the tensor data is
moved from GPU to CPU. Thanks to Rasmus Johansson for opening this
pull request: https://github.com/ahmedfgad/TorchGA/pull/2






PyGAD 2.18.1

Release Date: 19 September 2022


	A big fix when keep_elitism is used.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/132






PyGAD 2.18.2

Release Date: 14 February 2023


	Remove numpy.int and numpy.float from the list of supported
data types.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/151
https://github.com/ahmedfgad/GeneticAlgorithmPython/pull/152


	Call the on_crossover() callback function even if
crossover_type is None.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/138


	Call the on_mutation() callback function even if
mutation_type is None.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/138






PyGAD 2.18.3

Release Date: 14 February 2023


	Bug fixes.






PyGAD 2.19.0

Release Date: 22 February 2023


	A new summary() method is supported to return a Keras-like
summary of the PyGAD lifecycle.


	A new optional parameter called fitness_batch_size is supported
to calculate the fitness in batches. If it is assigned the value
1 or None (default), then the normal flow is used where the
fitness function is called for each individual solution. If the
fitness_batch_size parameter is assigned a value satisfying this
condition 1 < fitness_batch_size <= sol_per_pop, then the
solutions are grouped into batches of size fitness_batch_size
and the fitness function is called once for each batch. In this
case, the fitness function must return a list/tuple/numpy.ndarray
with a length equal to the number of solutions passed.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/136.


	The cloudpickle library
(https://github.com/cloudpipe/cloudpickle) is used instead of the
pickle library to pickle the pygad.GA objects. This solves
the issue of having to redefine the functions (e.g. fitness
function). The cloudpickle library is added as a dependency in
the requirements.txt file.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/159


	Support of assigning methods to these parameters: fitness_func,
crossover_type, mutation_type, parent_selection_type,
on_start, on_fitness, on_parents, on_crossover,
on_mutation, on_generation, and on_stop.
https://github.com/ahmedfgad/GeneticAlgorithmPython/pull/92
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/138


	Validating the output of the parent selection, crossover, and
mutation functions.


	The built-in parent selection operators return the parent’s indices
as a NumPy array.


	The outputs of the parent selection, crossover, and mutation
operators must be NumPy arrays.


	Fix an issue when allow_duplicate_genes=True.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/39


	Fix an issue creating scatter plots of the solutions’ fitness.


	Sampling from a set() is no longer supported in Python 3.11.
Instead, sampling happens from a list(). Thanks Marco Brenna
for pointing to this issue.


	The lifecycle is updated to reflect that the new population’s
fitness is calculated at the end of the lifecycle not at the
beginning.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/154#issuecomment-1438739483


	There was an issue when save_solutions=True that causes the
fitness function to be called for solutions already explored and
have their fitness pre-calculated.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/160


	A new instance attribute named last_generation_elitism_indices
added to hold the indices of the selected elitism. This attribute
helps to re-use the fitness of the elitism instead of calling the
fitness function.


	Fewer calls to the best_solution() method which in turns saves
some calls to the fitness function.


	Some updates in the documentation to give more details about the
cal_pop_fitness() method.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/79#issuecomment-1439605442






PyGAD 2.19.1

Release Date: 22 February 2023


	Add the cloudpickle [https://github.com/cloudpipe/cloudpickle]
library as a dependency.






PyGAD 2.19.2

Release Date 23 February 2023


	Fix an issue when parallel processing was used where the elitism
solutions’ fitness values are not re-used.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/160#issuecomment-1441718184






PyGAD 3.0.0

Release Date 8 April 2023


	The structure of the library is changed and some methods defined in
the pygad.py module are moved to the pygad.utils,
pygad.helper, and pygad.visualize submodules.


	The pygad.utils.parent_selection module has a class named
ParentSelection where all the parent selection operators exist.
The pygad.GA class extends this class.


	The pygad.utils.crossover module has a class named Crossover
where all the crossover operators exist. The pygad.GA class
extends this class.


	The pygad.utils.mutation module has a class named Mutation
where all the mutation operators exist. The pygad.GA class
extends this class.


	The pygad.helper.unique module has a class named Unique some
helper methods exist to solve duplicate genes and make sure every
gene is unique. The pygad.GA class extends this class.


	The pygad.visualize.plot module has a class named Plot where
all the methods that create plots exist. The pygad.GA class
extends this class.


	Support of using the logging module to log the outputs to both
the console and text file instead of using the print() function.
This is by assigning the logging.Logger to the new logger
parameter. Check the Logging
Outputs [https://pygad.readthedocs.io/en/latest/pygad_more.html#logging-outputs]
for more information.


	A new instance attribute called logger to save the logger.


	The function/method passed to the fitness_func parameter accepts
a new parameter that refers to the instance of the pygad.GA
class. Check this for an example: Use Functions and Methods to
Build Fitness Function and
Callbacks [https://pygad.readthedocs.io/en/latest/pygad_more.html#use-functions-and-methods-to-build-fitness-and-callbacks].
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/163


	Update the documentation to include an example of using functions
and methods to calculate the fitness and build callbacks. Check this
for more details: Use Functions and Methods to Build Fitness
Function and
Callbacks [https://pygad.readthedocs.io/en/latest/pygad_more.html#use-functions-and-methods-to-build-fitness-and-callbacks].
https://github.com/ahmedfgad/GeneticAlgorithmPython/pull/92#issuecomment-1443635003


	Validate the value passed to the initial_population parameter.


	Validate the type and length of the pop_fitness parameter of the
best_solution() method.


	Some edits in the documentation.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/106


	Fix an issue when building the initial population as (some) genes
have their value taken from the mutation range (defined by the
parameters random_mutation_min_val and
random_mutation_max_val) instead of using the parameters
init_range_low and init_range_high.


	The summary() method returns the summary as a single-line
string. Just log/print the returned string it to see it properly.


	The callback_generation parameter is removed. Use the
on_generation parameter instead.


	There was an issue when using the parallel_processing parameter
with Keras and PyTorch. As Keras/PyTorch are not thread-safe, the
predict() method gives incorrect and weird results when more
than 1 thread is used.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/145
https://github.com/ahmedfgad/TorchGA/issues/5
https://github.com/ahmedfgad/KerasGA/issues/6. Thanks to this
StackOverflow
answer [https://stackoverflow.com/a/75606666/5426539].


	Replace numpy.float by float in the 2 parent selection
operators roulette wheel and stochastic universal.
https://github.com/ahmedfgad/GeneticAlgorithmPython/pull/168






PyGAD 3.0.1

Release Date 20 April 2023


	Fix an issue with passing user-defined function/method for parent
selection.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/179






PyGAD 3.1.0

Release Date 20 June 2023


	Fix a bug when the initial population has duplciate genes if a
nested gene space is used.


	The gene_space parameter can no longer be assigned a tuple.


	Fix a bug when the gene_space parameter has a member of type
tuple.


	A new instance attribute called gene_space_unpacked which has
the unpacked gene_space. It is used to solve duplicates. For
infinite ranges in the gene_space, they are unpacked to a
limited number of values (e.g. 100).


	Bug fixes when creating the initial population using gene_space
attribute.


	When a dict is used with the gene_space attribute, the new
gene value was calculated by summing 2 values: 1) the value sampled
from the dict 2) a random value returned from the random
mutation range defined by the 2 parameters
random_mutation_min_val and random_mutation_max_val. This
might cause the gene value to exceed the range limit defined in the
gene_space. To respect the gene_space range, this release
only returns the value from the dict without summing it to a
random value.


	Formatting the strings using f-string instead of the format()
method. https://github.com/ahmedfgad/GeneticAlgorithmPython/pull/189


	In the __init__() of the pygad.GA class, the logged error
messages are handled using a try-except block instead of
repeating the logger.error() command.
https://github.com/ahmedfgad/GeneticAlgorithmPython/pull/189


	A new class named CustomLogger is created in the pygad.cnn
module to create a default logger using the logging module
assigned to the logger attribute. This class is extended in all
other classes in the module. The constructors of these classes have
a new parameter named logger which defaults to None. If no
logger is passed, then the default logger in the CustomLogger
class is used.


	Except for the pygad.nn module, the print() function in all
other modules are replaced by the logging module to log
messages.


	The callback functions/methods on_fitness(), on_parents(),
on_crossover(), and on_mutation() can return values. These
returned values override the corresponding properties. The output of
on_fitness() overrides the population fitness. The
on_parents() function/method must return 2 values representing
the parents and their indices. The output of on_crossover()
overrides the crossover offspring. The output of on_mutation()
overrides the mutation offspring.


	Fix a bug when adaptive mutation is used while
fitness_batch_size>1.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/195


	When allow_duplicate_genes=False and a user-defined
gene_space is used, it sometimes happen that there is no room to
solve the duplicates between the 2 genes by simply replacing the
value of one gene by another gene. This release tries to solve such
duplicates by looking for a third gene that will help in solving the
duplicates. Check this
section [https://pygad.readthedocs.io/en/latest/pygad_more.html#prevent-duplicates-in-gene-values]
for more information.


	Use probabilities to select parents using the rank parent selection
method.
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/205


	The 2 parameters random_mutation_min_val and
random_mutation_max_val can accept iterables
(list/tuple/numpy.ndarray) with length equal to the number of genes.
This enables customizing the mutation range for each individual
gene.
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/198


	The 2 parameters init_range_low and init_range_high can
accept iterables (list/tuple/numpy.ndarray) with length equal to the
number of genes. This enables customizing the initial range for each
individual gene when creating the initial population.


	The data parameter in the predict() function of the
pygad.kerasga module can be assigned a data generator.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/115
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/207


	The predict() function of the pygad.kerasga module accepts 3
optional parameters: 1) batch_size=None, verbose=0, and
steps=None. Check documentation of the Keras
Model.predict() [https://keras.io/api/models/model_training_apis]
method for more information.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/207


	The documentation is updated to explain how mutation works when
gene_space is used with int or float data types. Check
this
section [https://pygad.readthedocs.io/en/latest/pygad_more.html#limit-the-gene-value-range-using-the-gene-space-parameter].
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/198






PyGAD 3.2.0

Release Date 7 September 2023


	A new module pygad.utils.nsga2 is created that has the NSGA2
class that includes the functionalities of NSGA-II. The class has
these methods: 1) get_non_dominated_set() 2)
non_dominated_sorting() 3) crowding_distance() 4)
sort_solutions_nsga2(). Check this
section [https://pygad.readthedocs.io/en/latest/pygad_more.html#multi-objective-optimization]
for an example.


	Support of multi-objective optimization using Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) using the NSGA2 class in the
pygad.utils.nsga2 module. Just return a list, tuple, or
numpy.ndarray from the fitness function and the library will
consider the problem as multi-objective optimization. All the
objectives are expected to be maximization. Check this
section [https://pygad.readthedocs.io/en/latest/pygad_more.html#multi-objective-optimization]
for an example.


	The parent selection methods and adaptive mutation are edited to
support multi-objective optimization.


	Two new NSGA-II parent selection methods are supported in the
pygad.utils.parent_selection module: 1) Tournament selection for
NSGA-II 2) NSGA-II selection.


	The plot_fitness() method in the pygad.plot module has a new
optional parameter named label to accept the label of the plots.
This is only used for multi-objective problems. Otherwise, it is
ignored. It defaults to None and accepts a list, tuple,
or numpy.ndarray. The labels are used in a legend inside the
plot.


	The default color in the methods of the pygad.plot module is
changed to the greenish #64f20c color.


	A new instance attribute named pareto_fronts added to the
pygad.GA instances that holds the pareto fronts when solving a
multi-objective problem.


	The gene_type accepts a list, tuple, or
numpy.ndarray for integer data types given that the precision is
set to None (e.g. gene_type=[float, [int, None]]).


	In the cal_pop_fitness() method, the fitness value is re-used if
save_best_solutions=True and the solution is found in the
best_solutions attribute. These parameters also can help
re-using the fitness of a solution instead of calling the fitness
function: keep_elitism, keep_parents, and
save_solutions.


	The value 99999999999 is replaced by float('inf') in the 2
methods wheel_cumulative_probs() and
stochastic_universal_selection() inside the
pygad.utils.parent_selection.ParentSelection class.


	The plot_result() method in the pygad.visualize.plot.Plot
class is removed. Instead, please use the plot_fitness() if you
did not upgrade yet.






PyGAD 3.3.0

Release Date 29 January 2024


	Solve bugs when multi-objective optimization is used.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/238


	When the stop_ciiteria parameter is used with the reach
keyword, then multiple numeric values can be passed when solving a
multi-objective problem. For example, if a problem has 3 objective
functions, then stop_criteria="reach_10_20_30" means the GA
stops if the fitness of the 3 objectives are at least 10, 20, and
30, respectively. The number values must match the number of
objective functions. If a single value found (e.g.
stop_criteria=reach_5) when solving a multi-objective problem,
then it is used across all the objectives.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/238


	The delay_after_gen parameter is now deprecated and will be
removed in a future release. If it is necessary to have a time delay
after each generation, then assign a callback function/method to the
on_generation parameter to pause the evolution.


	Parallel processing now supports calculating the fitness during
adaptive mutation.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/201


	The population size can be changed during runtime by changing all
the parameters that would affect the size of any thing used by the
GA. For more information, check the Change Population Size during
Runtime [https://pygad.readthedocs.io/en/latest/pygad_more.html#change-population-size-during-runtime]
section.
https://github.com/ahmedfgad/GeneticAlgorithmPython/discussions/234


	When a dictionary exists in the gene_space parameter without a
step, then mutation occurs by adding a random value to the gene
value. The random vaue is generated based on the 2 parameters
random_mutation_min_val and random_mutation_max_val. For
more information, check the How Mutation Works with the gene_space
Parameter? [https://pygad.readthedocs.io/en/latest/pygad_more.html#how-mutation-works-with-the-gene-space-parameter]
section.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/229


	Add object as a supported data type for int
(GA.supported_int_types) and float (GA.supported_float_types).
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/174


	Use the raise clause instead of the sys.exit(-1) to
terminate the execution.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/213


	Fix a bug when multi-objective optimization is used with batch
fitness calculation (e.g. fitness_batch_size set to a non-zero
number).


	Fix a bug in the pygad.py script when finding the index of the
best solution. It does not work properly with multi-objective
optimization where self.best_solutions_fitness have multiple
columns.




self.best_solution_generation = numpy.where(numpy.array(
    self.best_solutions_fitness) == numpy.max(numpy.array(self.best_solutions_fitness)))[0][0]







PyGAD 3.3.1

Release Date 17 February 2024


	After the last generation and before the run() method completes,
update the 2 instance attributes: 1) last_generation_parents 2)
last_generation_parents_indices. This is to keep the list of
parents up-to-date with the latest population fitness
last_generation_fitness.
https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/275


	4 methods with names starting with run_. Their purpose is to keep
the main loop inside the run() method clean. Check the Other
Methods [https://pygad.readthedocs.io/en/latest/pygad.html#other-methods]
section for more information.







PyGAD Projects at GitHub

The PyGAD library is available at PyPI at this page
https://pypi.org/project/pygad. PyGAD is built out of a number of
open-source GitHub projects. A brief note about these projects is given
in the next subsections.


GeneticAlgorithmPython [https://github.com/ahmedfgad/GeneticAlgorithmPython]

GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython

GeneticAlgorithmPython [https://github.com/ahmedfgad/GeneticAlgorithmPython]
is the first project which is an open-source Python 3 project for
implementing the genetic algorithm based on NumPy.



NumPyANN [https://github.com/ahmedfgad/NumPyANN]

GitHub Link: https://github.com/ahmedfgad/NumPyANN

NumPyANN [https://github.com/ahmedfgad/NumPyANN] builds artificial
neural networks in Python 3 using NumPy from scratch. The
purpose of this project is to only implement the forward pass of a
neural network without using a training algorithm. Currently, it only
supports classification and later regression will be also supported.
Moreover, only one class is supported per sample.



NeuralGenetic [https://github.com/ahmedfgad/NeuralGenetic]

GitHub Link: https://github.com/ahmedfgad/NeuralGenetic

NeuralGenetic [https://github.com/ahmedfgad/NeuralGenetic] trains
neural networks using the genetic algorithm based on the previous 2
projects
GeneticAlgorithmPython [https://github.com/ahmedfgad/GeneticAlgorithmPython]
and NumPyANN [https://github.com/ahmedfgad/NumPyANN].



NumPyCNN [https://github.com/ahmedfgad/NumPyCNN]

GitHub Link: https://github.com/ahmedfgad/NumPyCNN

NumPyCNN [https://github.com/ahmedfgad/NumPyCNN] builds
convolutional neural networks using NumPy. The purpose of this project
is to only implement the forward pass of a convolutional neural
network without using a training algorithm.



CNNGenetic [https://github.com/ahmedfgad/CNNGenetic]

GitHub Link: https://github.com/ahmedfgad/CNNGenetic

CNNGenetic [https://github.com/ahmedfgad/CNNGenetic] trains
convolutional neural networks using the genetic algorithm. It uses the
GeneticAlgorithmPython [https://github.com/ahmedfgad/GeneticAlgorithmPython]
project for building the genetic algorithm.



KerasGA [https://github.com/ahmedfgad/KerasGA]

GitHub Link: https://github.com/ahmedfgad/KerasGA

KerasGA [https://github.com/ahmedfgad/KerasGA] trains
Keras [https://keras.io] models using the genetic algorithm. It uses
the
GeneticAlgorithmPython [https://github.com/ahmedfgad/GeneticAlgorithmPython]
project for building the genetic algorithm.



TorchGA [https://github.com/ahmedfgad/TorchGA]

GitHub Link: https://github.com/ahmedfgad/TorchGA

TorchGA [https://github.com/ahmedfgad/TorchGA] trains
PyTorch [https://pytorch.org] models using the genetic algorithm. It
uses the
GeneticAlgorithmPython [https://github.com/ahmedfgad/GeneticAlgorithmPython]
project for building the genetic algorithm.

pygad.torchga [https://github.com/ahmedfgad/TorchGA]:
https://github.com/ahmedfgad/TorchGA




Stackoverflow Questions about PyGAD


How do I proceed to load a ga_instance as “.pkl” format in PyGad? [https://stackoverflow.com/questions/67424181/how-do-i-proceed-to-load-a-ga-instance-as-pkl-format-in-pygad]



Binary Classification NN Model Weights not being Trained in PyGAD [https://stackoverflow.com/questions/67276696/binary-classification-nn-model-weights-not-being-trained-in-pygad]



How to solve TSP problem using pyGAD package? [https://stackoverflow.com/questions/66298595/how-to-solve-tsp-problem-using-pygad-package]



How can I save a matplotlib plot that is the output of a function in jupyter? [https://stackoverflow.com/questions/66055330/how-can-i-save-a-matplotlib-plot-that-is-the-output-of-a-function-in-jupyter]



How do I query the best solution of a pyGAD GA instance? [https://stackoverflow.com/questions/65757722/how-do-i-query-the-best-solution-of-a-pygad-ga-instance]



Multi-Input Multi-Output in Genetic algorithm (python) [https://stackoverflow.com/questions/64943711/multi-input-multi-output-in-genetic-algorithm-python]

https://www.linkedin.com/pulse/validation-short-term-parametric-trading-model-genetic-landolfi

https://itchef.ru/articles/397758

https://audhiaprilliant.medium.com/genetic-algorithm-based-clustering-algorithm-in-searching-robust-initial-centroids-for-k-means-e3b4d892a4be

https://python.plainenglish.io/validation-of-a-short-term-parametric-trading-model-with-genetic-optimization-and-walk-forward-89708b789af6

https://ichi.pro/ko/pygadwa-hamkke-yujeon-algolijeum-eul-sayonghayeo-keras-model-eul-hunlyeonsikineun-bangbeob-173299286377169

https://ichi.pro/tr/pygad-ile-genetik-algoritmayi-kullanarak-keras-modelleri-nasil-egitilir-173299286377169

https://ichi.pro/ru/kak-obucit-modeli-keras-s-pomos-u-geneticeskogo-algoritma-s-pygad-173299286377169

https://blog.csdn.net/sinat_38079265/article/details/108449614




Submitting Issues

If there is an issue using PyGAD, then use any of your preferred option
to discuss that issue.

One way is submitting an
issue [https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/new]
into this GitHub project
(github.com/ahmedfgad/GeneticAlgorithmPython [https://github.com/ahmedfgad/GeneticAlgorithmPython])
in case something is not working properly or to ask for questions.

If this is not a proper option for you, then check the Contact
Us [https://pygad.readthedocs.io/en/latest/Footer.html#contact-us]
section for more contact details.



Ask for Feature

PyGAD is actively developed with the goal of building a dynamic library
for suporting a wide-range of problems to be optimized using the genetic
algorithm.

To ask for a new feature, either submit an
issue [https://github.com/ahmedfgad/GeneticAlgorithmPython/issues/new]
into this GitHub project
(github.com/ahmedfgad/GeneticAlgorithmPython [https://github.com/ahmedfgad/GeneticAlgorithmPython])
or send an e-mail to ahmed.f.gad@gmail.com.

Also check the Contact
Us [https://pygad.readthedocs.io/en/latest/Footer.html#contact-us]
section for more contact details.



Projects Built using PyGAD

If you created a project that uses PyGAD, then we can support you by
mentioning this project here in PyGAD’s documentation.

To do that, please send a message at ahmed.f.gad@gmail.com or check the
Contact
Us [https://pygad.readthedocs.io/en/latest/Footer.html#contact-us]
section for more contact details.

Within your message, please send the following details:


	Project title


	Brief description


	Preferably, a link that directs the readers to your project






Tutorials about PyGAD


Adaptive Mutation in Genetic Algorithm with Python Examples [https://neptune.ai/blog/adaptive-mutation-in-genetic-algorithm-with-python-examples]

In this tutorial, we’ll see why mutation with a fixed number of genes is
bad, and how to replace it with adaptive mutation. Using the PyGAD
Python 3 library [https://pygad.readthedocs.io/], we’ll discuss a few
examples that use both random and adaptive mutation.



Clustering Using the Genetic Algorithm in Python [https://blog.paperspace.com/clustering-using-the-genetic-algorithm]

This tutorial discusses how the genetic algorithm is used to cluster
data, starting from random clusters and running until the optimal
clusters are found. We’ll start by briefly revising the K-means
clustering algorithm to point out its weak points, which are later
solved by the genetic algorithm. The code examples in this tutorial are
implemented in Python using the PyGAD
library [https://pygad.readthedocs.io/].



Working with Different Genetic Algorithm Representations in Python [https://blog.paperspace.com/working-with-different-genetic-algorithm-representations-python]

Depending on the nature of the problem being optimized, the genetic
algorithm (GA) supports two different gene representations: binary, and
decimal. The binary GA has only two values for its genes, which are 0
and 1. This is easier to manage as its gene values are limited compared
to the decimal GA, for which we can use different formats like float or
integer, and limited or unlimited ranges.

This tutorial discusses how the
PyGAD [https://pygad.readthedocs.io/] library supports the two GA
representations, binary and decimal.



5 Genetic Algorithm Applications Using PyGAD [https://blog.paperspace.com/genetic-algorithm-applications-using-pygad]

This tutorial introduces PyGAD, an open-source Python library for
implementing the genetic algorithm and training machine learning
algorithms. PyGAD supports 19 parameters for customizing the genetic
algorithm for various applications.

Within this tutorial we’ll discuss 5 different applications of the
genetic algorithm and build them using PyGAD.



Train Neural Networks Using a Genetic Algorithm in Python with PyGAD [https://heartbeat.fritz.ai/train-neural-networks-using-a-genetic-algorithm-in-python-with-pygad-862905048429?gi=ba58ee6b4bbd]

The genetic algorithm (GA) is a biologically-inspired optimization
algorithm. It has in recent years gained importance, as it’s simple
while also solving complex problems like travel route optimization,
training machine learning algorithms, working with single and
multi-objective problems, game playing, and more.

Deep neural networks are inspired by the idea of how the biological
brain works. It’s a universal function approximator, which is capable of
simulating any function, and is now used to solve the most complex
problems in machine learning. What’s more, they’re able to work with all
types of data (images, audio, video, and text).

Both genetic algorithms (GAs) and neural networks (NNs) are similar, as
both are biologically-inspired techniques. This similarity motivates us
to create a hybrid of both to see whether a GA can train NNs with high
accuracy.

This tutorial uses PyGAD [https://pygad.readthedocs.io/], a Python
library that supports building and training NNs using a GA.
PyGAD [https://pygad.readthedocs.io/] offers both classification and
regression NNs.



Building a Game-Playing Agent for CoinTex Using the Genetic Algorithm [https://blog.paperspace.com/building-agent-for-cointex-using-genetic-algorithm]

In this tutorial we’ll see how to build a game-playing agent using only
the genetic algorithm to play a game called
CoinTex [https://play.google.com/store/apps/details?id=coin.tex.cointexreactfast&hl=en],
which is developed in the Kivy Python framework. The objective of
CoinTex is to collect the randomly distributed coins while avoiding
collision with fire and monsters (that move randomly). The source code
of CoinTex can be found on
GitHub [https://github.com/ahmedfgad/CoinTex].

The genetic algorithm is the only AI used here; there is no other
machine/deep learning model used with it. We’ll implement the genetic
algorithm using
PyGad [https://blog.paperspace.com/genetic-algorithm-applications-using-pygad/].
This tutorial starts with a quick overview of CoinTex followed by a
brief explanation of the genetic algorithm, and how it can be used to
create the playing agent. Finally, we’ll see how to implement these
ideas in Python.

The source code of the genetic algorithm agent is available
here [https://github.com/ahmedfgad/CoinTex/tree/master/PlayerGA],
and you can download the code used in this tutorial from
here [https://github.com/ahmedfgad/CoinTex/tree/master/PlayerGA/TutorialProject].



How To Train Keras Models Using the Genetic Algorithm with PyGAD [https://blog.paperspace.com/train-keras-models-using-genetic-algorithm-with-pygad]

PyGAD is an open-source Python library for building the genetic
algorithm and training machine learning algorithms. It offers a wide
range of parameters to customize the genetic algorithm to work with
different types of problems.

PyGAD has its own modules that support building and training neural
networks (NNs) and convolutional neural networks (CNNs). Despite these
modules working well, they are implemented in Python without any
additional optimization measures. This leads to comparatively high
computational times for even simple problems.

The latest PyGAD version, 2.8.0 (released on 20 September 2020),
supports a new module to train Keras models. Even though Keras is built
in Python, it’s fast. The reason is that Keras uses TensorFlow as a
backend, and TensorFlow is highly optimized.

This tutorial discusses how to train Keras models using PyGAD. The
discussion includes building Keras models using either the Sequential
Model or the Functional API, building an initial population of Keras
model parameters, creating an appropriate fitness function, and more.

[image: image1] [https://blog.paperspace.com/train-keras-models-using-genetic-algorithm-with-pygad]



Train PyTorch Models Using Genetic Algorithm with PyGAD [https://neptune.ai/blog/train-pytorch-models-using-genetic-algorithm-with-pygad]

PyGAD [https://pygad.readthedocs.io/] is a genetic algorithm Python
3 library for solving optimization problems. One of these problems is
training machine learning algorithms.

PyGAD has a module called
pygad.kerasga [https://github.com/ahmedfgad/KerasGA]. It trains
Keras models using the genetic algorithm. On January 3rd, 2021, a new
release of PyGAD 2.10.0 [https://pygad.readthedocs.io/] brought a
new module called
pygad.torchga [https://github.com/ahmedfgad/TorchGA] to train
PyTorch models. It’s very easy to use, but there are a few tricky steps.

So, in this tutorial, we’ll explore how to use PyGAD to train PyTorch
models.

[image: image2] [https://neptune.ai/blog/train-pytorch-models-using-genetic-algorithm-with-pygad]



A Guide to Genetic ‘Learning’ Algorithms for Optimization [https://towardsdatascience.com/a-guide-to-genetic-learning-algorithms-for-optimization-e1067cdc77e7]




PyGAD in Other Languages


French

Cómo los algoritmos genéticos pueden competir con el descenso de
gradiente y el
backprop [https://www.hebergementwebs.com/nouvelles/comment-les-algorithmes-genetiques-peuvent-rivaliser-avec-la-descente-de-gradient-et-le-backprop]

Bien que la manière standard d’entraîner les réseaux de neurones soit la
descente de gradient et la rétropropagation, il y a d’autres joueurs
dans le jeu. L’un d’eux est les algorithmes évolutionnaires, tels que
les algorithmes génétiques.

Utiliser un algorithme génétique pour former un réseau de neurones
simple pour résoudre le OpenAI CartPole Jeu. Dans cet article, nous
allons former un simple réseau de neurones pour résoudre le OpenAI
CartPole . J’utiliserai PyTorch et PyGAD .

[image: image3] [https://www.hebergementwebs.com/nouvelles/comment-les-algorithmes-genetiques-peuvent-rivaliser-avec-la-descente-de-gradient-et-le-backprop]



Spanish

Cómo los algoritmos genéticos pueden competir con el descenso de
gradiente y el
backprop [https://www.hebergementwebs.com/noticias/como-los-algoritmos-geneticos-pueden-competir-con-el-descenso-de-gradiente-y-el-backprop]

Aunque la forma estandar de entrenar redes neuronales es el descenso de
gradiente y la retropropagacion, hay otros jugadores en el juego, uno de
ellos son los algoritmos evolutivos, como los algoritmos geneticos.

Usa un algoritmo genetico para entrenar una red neuronal simple para
resolver el Juego OpenAI CartPole. En este articulo, entrenaremos una
red neuronal simple para resolver el OpenAI CartPole . Usare PyTorch y
PyGAD .

[image: image4] [https://www.hebergementwebs.com/noticias/como-los-algoritmos-geneticos-pueden-competir-con-el-descenso-de-gradiente-y-el-backprop]



Korean


[PyGAD] Python 에서 Genetic Algorithm 을 사용해보기 [https://data-newbie.tistory.com/m/685]

[image: image5] [https://data-newbie.tistory.com/m/685]

파이썬에서 genetic algorithm을 사용하는 패키지들을 다 사용해보진
않았지만, 확장성이 있어보이고, 시도할 일이 있어서 살펴봤다.

이 패키지에서 가장 인상 깊었던 것은 neural network에서 hyper parameter
탐색을 gradient descent 방식이 아닌 GA로도 할 수 있다는 것이다.

개인적으로 이 부분이 어느정도 초기치를 잘 잡아줄 수 있는 역할로도 쓸 수
있고, Loss가 gradient descent 하기 어려운 구조에서 대안으로 쓸 수 있을
것으로도 생각된다.

일단 큰 흐름은 다음과 같이 된다.

사실 완전히 흐름이나 각 parameter에 대한 이해는 부족한 상황




Turkish


PyGAD ile Genetik Algoritmayı Kullanarak Keras Modelleri Nasıl Eğitilir [https://erencan34.medium.com/pygad-ile-genetik-algoritmay%C4%B1-kullanarak-keras-modelleri-nas%C4%B1l-e%C4%9Fitilir-cf92639a478c]

This is a translation of an original English tutorial published at
Paperspace: How To Train Keras Models Using the Genetic Algorithm with
PyGAD [https://blog.paperspace.com/train-keras-models-using-genetic-algorithm-with-pygad]

PyGAD, genetik algoritma oluşturmak ve makine öğrenimi algoritmalarını
eğitmek için kullanılan açık kaynaklı bir Python kitaplığıdır. Genetik
algoritmayı farklı problem türleri ile çalışacak şekilde özelleştirmek
için çok çeşitli parametreler sunar.

PyGAD, sinir ağları (NN’ler) ve evrişimli sinir ağları (CNN’ler)
oluşturmayı ve eğitmeyi destekleyen kendi modüllerine sahiptir. Bu
modüllerin iyi çalışmasına rağmen, herhangi bir ek optimizasyon önlemi
olmaksızın Python’da uygulanırlar. Bu, basit problemler için bile
nispeten yüksek hesaplama sürelerine yol açar.

En son PyGAD sürümü 2.8.0 (20 Eylül 2020’de piyasaya sürüldü), Keras
modellerini eğitmek için yeni bir modülü destekliyor. Keras Python’da
oluşturulmuş olsa da hızlıdır. Bunun nedeni, Keras’ın arka uç olarak
TensorFlow kullanması ve TensorFlow’un oldukça optimize edilmiş
olmasıdır.

Bu öğreticide, PyGAD kullanılarak Keras modellerinin nasıl eğitileceği
anlatılmaktadır. Tartışma, Sıralı Modeli veya İşlevsel API’yi kullanarak
Keras modellerini oluşturmayı, Keras model parametrelerinin ilk
popülasyonunu oluşturmayı, uygun bir uygunluk işlevi oluşturmayı ve daha
fazlasını içerir.

[image: image6] [https://erencan34.medium.com/pygad-ile-genetik-algoritmay%C4%B1-kullanarak-keras-modelleri-nas%C4%B1l-e%C4%9Fitilir-cf92639a478c]




Hungarian


Tensorflow alapozó 10. Neurális hálózatok tenyésztése genetikus algoritmussal PyGAD és OpenAI Gym használatával [https://thebojda.medium.com/tensorflow-alapoz%C3%B3-10-24f7767d4a2c]

Hogy kontextusba helyezzem a genetikus algoritmusokat, ismételjük kicsit
át, hogy hogyan működik a gradient descent és a backpropagation, ami a
neurális hálók tanításának általános módszere. Az erről írt cikkemet itt
tudjátok elolvasni.

A hálózatok tenyésztéséhez a
PyGAD [https://pygad.readthedocs.io/en/latest/] nevű
programkönyvtárat használjuk, így mindenek előtt ezt kell telepítenünk,
valamint a Tensorflow-t és a Gym-et, amit Colabban már eleve telepítve
kapunk.

Maga a PyGAD egy teljesen általános genetikus algoritmusok futtatására
képes rendszer. Ennek a kiterjesztése a KerasGA, ami az általános motor
Tensorflow (Keras) neurális hálókon történő futtatását segíti. A 47.
sorban létrehozott KerasGA objektum ennek a kiterjesztésnek a része és
arra szolgál, hogy a paraméterként átadott modellből a második
paraméterben megadott számosságú populációt hozzon létre. Mivel a
hálózatunk 386 állítható paraméterrel rendelkezik, ezért a DNS-ünk itt
386 elemből fog állni. A populáció mérete 10 egyed, így a kezdő
populációnk egy 10x386 elemű mátrix lesz. Ezt adjuk át az 51. sorban az
initial_population paraméterben.

[image: image7] [https://thebojda.medium.com/tensorflow-alapoz%C3%B3-10-24f7767d4a2c]




Russian


PyGAD: библиотека для имплементации генетического алгоритма [https://neurohive.io/ru/frameworki/pygad-biblioteka-dlya-implementacii-geneticheskogo-algoritma]

PyGAD — это библиотека для имплементации генетического алгоритма. Кроме
того, библиотека предоставляет доступ к оптимизированным реализациям
алгоритмов машинного обучения. PyGAD разрабатывали на Python 3.

Библиотека PyGAD поддерживает разные типы скрещивания, мутации и
селекции родителя. PyGAD позволяет оптимизировать проблемы с помощью
генетического алгоритма через кастомизацию целевой функции.

Кроме генетического алгоритма, библиотека содержит оптимизированные
имплементации алгоритмов машинного обучения. На текущий момент PyGAD
поддерживает создание и обучение нейросетей для задач классификации.

Библиотека находится в стадии активной разработки. Создатели планируют
добавление функционала для решения бинарных задач и имплементации новых
алгоритмов.

PyGAD разрабатывали на Python 3.7.3. Зависимости включают в себя NumPy
для создания и манипуляции массивами и Matplotlib для визуализации. Один
из изкейсов использования инструмента — оптимизация весов, которые
удовлетворяют заданной функции.

[image: image8] [https://neurohive.io/ru/frameworki/pygad-biblioteka-dlya-implementacii-geneticheskogo-algoritma]





Research Papers using PyGAD

A number of research papers used PyGAD and here are some of them:


	Alberto Meola, Manuel Winkler, Sören Weinrich, Metaheuristic
optimization of data preparation and machine learning hyperparameters
for prediction of dynamic methane production, Bioresource Technology,
Volume 372, 2023, 128604, ISSN 0960-8524.


	Jaros, Marta, and Jiri Jaros. “Performance-Cost Optimization of
Moldable Scientific Workflows.”


	Thorat, Divya. “Enhanced genetic algorithm to reduce makespan of
multiple jobs in map-reduce application on serverless platform”.
Diss. Dublin, National College of Ireland, 2020.


	Koch, Chris, and Edgar Dobriban. “AttenGen: Generating Live
Attenuated Vaccine Candidates using Machine Learning.” (2021).


	Bhardwaj, Bhavya, et al. “Windfarm optimization using Nelder-Mead and
Particle Swarm optimization.” 2021 7th International Conference on
Electrical Energy Systems (ICEES). IEEE, 2021.


	Bernardo, Reginald Christian S. and J. Said. “Towards a
model-independent reconstruction approach for late-time Hubble data.”
(2021).


	Duong, Tri Dung, Qian Li, and Guandong Xu. “Prototype-based
Counterfactual Explanation for Causal Classification.” arXiv
preprint arXiv:2105.00703 (2021).


	Farrag, Tamer Ahmed, and Ehab E. Elattar. “Optimized Deep Stacked
Long Short-Term Memory Network for Long-Term Load Forecasting.” IEEE
Access 9 (2021): 68511-68522.


	Antunes, E. D. O., Caetano, M. F., Marotta, M. A., Araujo, A.,
Bondan, L., Meneguette, R. I., & Rocha Filho, G. P. (2021, August).
Soluções Otimizadas para o Problema de Localização de Máxima
Cobertura em Redes Militarizadas 4G/LTE. In Anais do XXVI Workshop
de Gerência e Operação de Redes e Serviços (pp. 152-165). SBC.


	M. Yani, F. Ardilla, A. A. Saputra and N. Kubota, “Gradient-Free Deep
Q-Networks Reinforcement learning: Benchmark and Evaluation,” 2021
IEEE Symposium Series on Computational Intelligence (SSCI), 2021,
pp. 1-5, doi: 10.1109/SSCI50451.2021.9659941.


	Yani, Mohamad, and Naoyuki Kubota. “Deep Convolutional Networks with
Genetic Algorithm for Reinforcement Learning Problem.”


	Mahendra, Muhammad Ihza, and Isman Kurniawan. “Optimizing
Convolutional Neural Network by Using Genetic Algorithm for COVID-19
Detection in Chest X-Ray Image.” 2021 International Conference on
Data Science and Its Applications (ICoDSA). IEEE, 2021.


	Glibota, Vjeko. Umjeravanje mikroskopskog prometnog modela primjenom
genetskog algoritma. Diss. University of Zagreb. Faculty of
Transport and Traffic Sciences. Division of Intelligent Transport
Systems and Logistics. Department of Intelligent Transport Systems,
2021.


	Zhu, Mingda. Genetic Algorithm-based Parameter Identification for
Ship Manoeuvring Model under Wind Disturbance. MS thesis. NTNU,
2021.


	Abdalrahman, Ahmed, and Weihua Zhuang. “Dynamic pricing for
differentiated pev charging services using deep reinforcement
learning.” IEEE Transactions on Intelligent Transportation Systems
(2020).






More Links

https://rodriguezanton.com/identifying-contact-states-for-2d-objects-using-pygad-and/

https://torvaney.github.io/projects/t9-optimised



For More Information

There are different resources that can be used to get started with the
genetic algorithm and building it in Python.


Tutorial: Implementing Genetic Algorithm in Python

To start with coding the genetic algorithm, you can check the tutorial
titled Genetic Algorithm Implementation in
Python [https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad]
available at these links:


	LinkedIn [https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad]


	Towards Data
Science [https://towardsdatascience.com/genetic-algorithm-implementation-in-python-5ab67bb124a6]


	KDnuggets [https://www.kdnuggets.com/2018/07/genetic-algorithm-implementation-python.html]




This
tutorial [https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad]
is prepared based on a previous version of the project but it still a
good resource to start with coding the genetic algorithm.

[image: image9] [https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad]



Tutorial: Introduction to Genetic Algorithm

Get started with the genetic algorithm by reading the tutorial titled
Introduction to Optimization with Genetic
Algorithm [https://www.linkedin.com/pulse/introduction-optimization-genetic-algorithm-ahmed-gad]
which is available at these links:


	LinkedIn [https://www.linkedin.com/pulse/introduction-optimization-genetic-algorithm-ahmed-gad]


	Towards Data
Science [https://www.kdnuggets.com/2018/03/introduction-optimization-with-genetic-algorithm.html]


	KDnuggets [https://towardsdatascience.com/introduction-to-optimization-with-genetic-algorithm-2f5001d9964b]




[image: image10] [https://www.linkedin.com/pulse/introduction-optimization-genetic-algorithm-ahmed-gad]



Tutorial: Build Neural Networks in Python

Read about building neural networks in Python through the tutorial
titled Artificial Neural Network Implementation using NumPy and
Classification of the Fruits360 Image
Dataset [https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad]
available at these links:


	LinkedIn [https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad]


	Towards Data
Science [https://towardsdatascience.com/artificial-neural-network-implementation-using-numpy-and-classification-of-the-fruits360-image-3c56affa4491]


	KDnuggets [https://www.kdnuggets.com/2019/02/artificial-neural-network-implementation-using-numpy-and-image-classification.html]




[image: image11] [https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad]



Tutorial: Optimize Neural Networks with Genetic Algorithm

Read about training neural networks using the genetic algorithm through
the tutorial titled Artificial Neural Networks Optimization using
Genetic Algorithm with
Python [https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad]
available at these links:


	LinkedIn [https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad]


	Towards Data
Science [https://towardsdatascience.com/artificial-neural-networks-optimization-using-genetic-algorithm-with-python-1fe8ed17733e]


	KDnuggets [https://www.kdnuggets.com/2019/03/artificial-neural-networks-optimization-genetic-algorithm-python.html]




[image: image12] [https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad]



Tutorial: Building CNN in Python

To start with coding the genetic algorithm, you can check the tutorial
titled Building Convolutional Neural Network using NumPy from
Scratch [https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad]
available at these links:


	LinkedIn [https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad]


	Towards Data
Science [https://towardsdatascience.com/building-convolutional-neural-network-using-numpy-from-scratch-b30aac50e50a]


	KDnuggets [https://www.kdnuggets.com/2018/04/building-convolutional-neural-network-numpy-scratch.html]


	Chinese Translation [http://m.aliyun.com/yunqi/articles/585741]




This
tutorial [https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad])
is prepared based on a previous version of the project but it still a
good resource to start with coding CNNs.

[image: image13] [https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad]



Tutorial: Derivation of CNN from FCNN

Get started with the genetic algorithm by reading the tutorial titled
Derivation of Convolutional Neural Network from Fully Connected Network
Step-By-Step [https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad]
which is available at these links:


	LinkedIn [https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad]


	Towards Data
Science [https://towardsdatascience.com/derivation-of-convolutional-neural-network-from-fully-connected-network-step-by-step-b42ebafa5275]


	KDnuggets [https://www.kdnuggets.com/2018/04/derivation-convolutional-neural-network-fully-connected-step-by-step.html]




[image: image14] [https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad]



Book: Practical Computer Vision Applications Using Deep Learning with CNNs

You can also check my book cited as Ahmed Fawzy Gad ‘Practical Computer
Vision Applications Using Deep Learning with CNNs’. Dec. 2018, Apress,
978-1-4842-4167-7 [https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665]
which discusses neural networks, convolutional neural networks, deep
learning, genetic algorithm, and more.

Find the book at these links:


	Amazon [https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665]


	Springer [https://link.springer.com/book/10.1007/978-1-4842-4167-7]


	Apress [https://www.apress.com/gp/book/9781484241660]


	O’Reilly [https://www.oreilly.com/library/view/practical-computer-vision/9781484241677]


	Google Books [https://books.google.com.eg/books?id=xLd9DwAAQBAJ]




[image: ]



Contact Us


	E-mail: ahmed.f.gad@gmail.com


	LinkedIn [https://www.linkedin.com/in/ahmedfgad]


	Amazon Author Page [https://amazon.com/author/ahmedgad]


	Heartbeat [https://heartbeat.fritz.ai/@ahmedfgad]


	Paperspace [https://blog.paperspace.com/author/ahmed]


	KDnuggets [https://kdnuggets.com/author/ahmed-gad]


	TowardsDataScience [https://towardsdatascience.com/@ahmedfgad]


	GitHub [https://github.com/ahmedfgad]




[image: ]
Thank you for using
PyGAD [https://github.com/ahmedfgad/GeneticAlgorithmPython] :)
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